【ACM】棋盘覆盖 - 大数除
棋盘覆盖
- 描述
-
在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的2×2方格(图2为其中缺右下角的一个),去覆盖2k×2k未被覆盖过的方格,求需要类似图2方格总的个数s。如k=1时,s=1;k=2时,s=5

- 输入
- 第一行m表示有m组测试数据;
每一组测试数据的第一行有一个整数数k; - 输出
- 输出所需个数s;
- 样例输入
-
3
1
2
3 - 样例输出
-
1
5
21
思路:类似大数乘进行处理
#include <iostream>
#include <cstdio>
#include <cmath> using namespace std; int main(){
int a[];
int n;
cin>>n;
while (n--)
{
int m;
cin>>m;
int sum = ;
int temp;
int k = ;
a[] = ;
for (int i = ; i < m ; i++)
{
for (int j = ; j < k; j++)
{
temp = a[j] * + sum;
a[j] = temp % ;
sum = temp / ;
}
while (sum > )
{
a[k++] = sum % ;
sum /= ;
}
}
a[] -= ;
int d = k-;
int high = a[d]/>?d:d-;
sum = ;
while (d >= )
{
temp = a[d] + sum;
if (temp / > )
{
a[d] = temp / ;
sum = (temp-a[d]*)*;
d--;
}
else
{
sum = a[d]*;
a[d] = ;
d--;
} } for (int z = high ; z>=; z--)
{
cout<<a[z];
}
cout<<endl;
} return ;
}
【ACM】棋盘覆盖 - 大数除的更多相关文章
- 棋盘覆盖(大数阶乘,大数相除 + java)
棋盘覆盖 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的 ...
- 棋盘覆盖(一) ACM
棋盘覆盖 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的2×2方格(图2为其中缺右下角的一个),去覆盖2k×2k未被覆盖过的方格,求 ...
- bzoj 2706: [SDOI2012]棋盘覆盖 Dancing Link
2706: [SDOI2012]棋盘覆盖 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 255 Solved: 77[Submit][Status] ...
- NYOJ 45 棋盘覆盖
棋盘覆盖 水题,题不难,找公式难 import java.math.BigInteger; import java.util.Scanner; public class Main { public s ...
- NYOJ 45 棋盘覆盖 模拟+高精度
题意就不说了,中文题... 小白上讲了棋盘覆盖,于是我就挖了这题来做. 棋盘覆盖的推导不是很难理解,就是分治的思想,具体可以去谷歌下. 公式就是f(k) = f(k - 1) * 4 + 1,再化解下 ...
- NYOJ--45--棋盘覆盖(大数)
棋盘覆盖 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的 ...
- 棋盘覆盖问题(算法分析)(Java版)
1.问题描述: 在一个2k×2k个方格组成的棋盘中,若有一个方格与其他方格不同,则称该方格为一特殊方格,且称该棋盘为一个特殊棋盘.显然特殊方格在棋盘上出现的位置有种情形.因而对任何 k≥0,有4k种不 ...
- CODEVS 2171 棋盘覆盖
2171 棋盘覆盖 给出一张nn(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多少12的多米诺骨牌进行掩盖. 错误日志: 直接在模板上调整 \(maxn\) 时没有在相应邻接表数 ...
- 递归与分治策略之棋盘覆盖Java实现
递归与分治策略之棋盘覆盖 一.问题描述 二.过程详解 1.棋盘如下图,其中有一特殊方格:16*16 . 2.第一个分割结果:8*8 3.第二次分割结果:4*4 4.第三次分割结果:2*2 5.第四次分 ...
随机推荐
- 51nod 1250 排列与交换——dp
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250 仔细思考dp. 第一问,考虑已知 i-1 个数有多少种方案. ...
- MySQL函数不能创建的解决方法(转)
在使用MySQL数据库时,有时会遇到MySQL函数不能创建的情况.下面就教您一个解决MySQL函数不能创建问题的方法,供您借鉴参考. 出错信息大致类似: ERROR 1418 (HY000): Thi ...
- 开源Log框架和平台介绍
共有162款 日志工具(Logging)开源软件 http://www.oschina.net/project/tag/144/logging
- spring扩展点之二:spring中关于bean初始化、销毁等使用汇总,ApplicationContextAware将ApplicationContext注入
<spring扩展点之二:spring中关于bean初始化.销毁等使用汇总,ApplicationContextAware将ApplicationContext注入> <spring ...
- netty中的EventLoop和EventLoopGroup
Netty框架的主要线程就是I/O线程,线程模型设计的好坏,决定了系统的吞吐量.并发性和安全性等架构质量属性. 一.Netty的线程模型 在讨论Netty线程模型时候,一般首先会想到的是经典的Reac ...
- java基础知识学习 java异常
1: Unchecked Exception( 也就是运行时异常) VS Check Exception(非运行时异常) 2: 运行期异常 VS 非运行期异常? 非运行时异常: 必须在代码中显示 ...
- lvs-nat搭建httpd
拓扑图: #172.16.252.10 [root@~ localhost]#route -n Kernel IP routing table Destination Gateway Genmask ...
- UML核心元素--包
包是一种容器,如同文件夹一样,将某些信息分类,形成逻辑单元.包可以容纳任何UML元素,例如用例.业务实体.类图等,也包括子包. 一.分包原则: (1)高内聚:被分入同一个包的元素相互联系紧密,伸至不可 ...
- 推荐!Html5精品效果源码分享
一直在看别人的汇总,看到了一些不错的关于 HTML5内容的源码,我也汇总下分享出来,好东西需要共享!希望可以帮到需要的朋友. 1.劲爆分享:HTML5动感的火焰燃烧动画特效 这又是一款基于HTML5的 ...
- java不定参数列表---乔老师没讲,但是传智有讲
**public static void sum(int i,int...srgs){** package com.xml; public class dremo1 { public static v ...