Description

 ``Accordian'' Patience 

You are to simulate the playing of games of ``Accordian'' patience, the rules for which are as follows:

Deal cards one by one in a row from left to right, not overlapping. Whenever the card matches its immediate neighbour on the left, or matches the third card to the left, it may be moved onto that card. Cards match if they are of the same suit or same rank. After making a move, look to see if it has made additional moves possible. Only the top card of each pile may be moved at any given time. Gaps between piles should be closed up as soon as they appear by moving all piles on the right of the gap one position to the left. Deal out the whole pack, combining cards towards the left whenever possible. The game is won if the pack is reduced to a single pile.

Situations can arise where more than one play is possible. Where two cards may be moved, you should adopt the strategy of always moving the leftmost card possible. Where a card may be moved either one position to the left or three positions to the left, move it three positions.

Input

Input data to the program specifies the order in which cards are dealt from the pack. The input contains pairs of lines, each line containing 26 cards separated by single space characters. The final line of the input file contains a # as its first character. Cards are represented as a two character code. The first character is the face-value (A=Ace, 2-9, T=10, J=Jack, Q=Queen, K=King) and the second character is the suit (C=Clubs, D=Diamonds, H=Hearts, S=Spades).

Output

One line of output must be produced for each pair of lines (that between them describe a pack of 52 cards) in the input. Each line of output shows the number of cards in each of the piles remaining after playing ``Accordian patience'' with the pack of cards as described by the corresponding pairs of input lines.

Sample Input

QD AD 8H 5S 3H 5H TC 4D JH KS 6H 8S JS AC AS 8D 2H QS TS 3S AH 4H TH TD 3C 6S
8C 7D 4C 4S 7S 9H 7C 5D 2S KD 2D QH JD 6D 9D JC 2C KH 3D QC 6C 9S KC 7H 9C 5C
AC 2C 3C 4C 5C 6C 7C 8C 9C TC JC QC KC AD 2D 3D 4D 5D 6D 7D 8D TD 9D JD QD KD
AH 2H 3H 4H 5H 6H 7H 8H 9H KH 6S QH TH AS 2S 3S 4S 5S JH 7S 8S 9S TS JS QS KS
#

Sample Output

6 piles remaining: 40 8 1 1 1 1
1 pile remaining: 52 这个题目是一道栈模拟的题目,题目还可以,就是写的有点麻烦。 代码:
 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define esp 1e-10
#define N 100005 using namespace std; struct node
{
int top;
char card[][];
}s[]; bool Input ()
{
scanf ("%s", s[].card[]);
if (s[].card[][] == '#')
return ;
s[].top = ;
for (int i = ; i < ; ++i)
{
s[i].top = ;
scanf ("%s", s[i].card[]);
}
return ;
} void Output ()
{
queue <int> q;
for (int i = ; i < ; ++i)
if (s[i].top != )
q.push(i);
int sum = q.size();
if (sum == )
printf ("1 pile remaining: %d\n", s[q.front()].top);
else
{
printf ("%d piles remaining:", sum);
int k;
while (!q.empty())
{
k = q.front();
q.pop();
printf (" %d", s[k].top);
}
printf ("\n");
}
} void qt ()
{
int p = ;
for (;;)
{
if (p == )
break;
if (s[p].top != )
{
int one = -, two = -;
int flag = , j = p-;
for (;;)
{
if (j < )
break;
if (s[j].top != )
{
flag++;
if (flag == )
{
one = j;
break;
}
if (flag == )
two = j;
}
j--;
}
if (one != -)
{
if (s[p].card[s[p].top-][] == s[one].card[s[one].top-][] ||
s[p].card[s[p].top-][] == s[one].card[s[one].top-][])
{
strcpy (s[one].card[s[one].top], s[p].card[s[p].top-]);
s[p].top--;
s[one].top++;
p = ;
continue;
}
}
if (two != -)
{
if (s[p].card[s[p].top-][] == s[two].card[s[two].top-][] ||
s[p].card[s[p].top-][] == s[two].card[s[two].top-][])
{
strcpy (s[two].card[s[two].top], s[p].card[s[p].top-]);
s[p].top--;
s[two].top++;
p = ;
continue;
}
}
}
++p;
}
} int main()
{
//freopen ("test.txt", "r", stdin);
while (Input ())
{
qt ();
Output ();
}
return ;
}
												

ACM学习历程——UVA 127 "Accordian" Patience(栈;模拟)的更多相关文章

  1. UVa 127 - "Accordian" Patience

    题目:52张扑克,从左到右在平面上排列,按着如下规则处理: 1.按照从左到右的顺序,如果一张牌和左边的第一张或者第三张匹配,就把它放到对应的牌上面. 2.如果可以移动到多个位置,移动到最左端的牌上面. ...

  2. ACM学习历程——UVA11111 Generalized Matrioshkas(栈)

    Description   Problem B - Generalized Matrioshkas   Problem B - Generalized Matrioshkas  Vladimir wo ...

  3. ACM学习历程——UVA127 "Accordian" Patience(栈, 链表)

    Description  ``Accordian'' Patience  You are to simulate the playing of games of ``Accordian'' patie ...

  4. ACM学习历程——UVA11234 Expressions(栈,队列,树的遍历,后序遍历,bfs)

    Description   Problem E: Expressions2007/2008 ACM International Collegiate Programming Contest Unive ...

  5. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

  6. ACM学习历程——ZOJ 3829 Known Notation (2014牡丹江区域赛K题)(策略,栈)

    Description Do you know reverse Polish notation (RPN)? It is a known notation in the area of mathema ...

  7. 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始

    以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告

  8. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  9. ACM学习历程—HDU5521 Meeting(图论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是一个人从1开始走,一个人从n开始走.让最 ...

随机推荐

  1. 【BZOJ3270】博物馆 期望DP+高斯消元

    [BZOJ3270]博物馆 Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n ...

  2. 【BZOJ2728】[HNOI2012]与非 并查集+数位DP

    [BZOJ2728][HNOI2012]与非 Description Input 输入文件第一行是用空格隔开的四个正整数N,K,L和R,接下来的一行是N个非负整数A1,A2……AN,其含义如上所述.  ...

  3. windy数(简单数位DP)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6306  Solved: 2810[Submit][Sta ...

  4. 学习Sharding JDBC 从入门到出门-1

    感觉大神已经写好了,自己膜拜下下, 送上大神地址:http://www.cnblogs.com/zhongxinWang/p/4262650.html 这篇博客主要是理论的说明了什么是分库分表,路由等 ...

  5. L2 范数 L1 范数 出租车范数

    https://en.wikipedia.org/wiki/Norm_(mathematics) http://cs231n.github.io/classification/

  6. height为auto, 滚动条出现时, 使页面不跳动

    <style> html { margin-left: calc(100vw - 100%); } </style> ;

  7. IOS navigationItem 设置返回button,title图片和rightBarButtonItem

    1.自己定义返回button UIBarButtonItem *backItem = [[UIBarButtonItem alloc] initWithTitle:@"返回" st ...

  8. SpringBoot_集成Shiro后获取当前用户

    //SecurityUtils.getSubject().getPrincipal();  就可以获取了 protected User getCurrentUser(){ return (User) ...

  9. vmware 下的三种网络模式

    VMWare提供三种工作模式桥接(bridge).NAT(网络地址转换)和host-only(主机模式). 桥接模式 在桥接模式下,VMWare虚拟出来的操作系统就像是局域网中的一台独立的主机(主机和 ...

  10. awk substr()函数

    awk 里的substr函数用法举例: 要截取要截取的内容1: F115!16201!1174113017250745 10.86.96.41 211.140.16.1 200703180718F12 ...