题目链接:https://www.luogu.org/problemnew/show/P1637

BIT + 离散化。

读题得数据规模需离散化。BIT开不到longint这么大的数组。

对于题目所求的三元上升子序列,我们可以通过枚举1~n作为中间数,记录左边比他小的个数L[i],右边比他大的个数R[i],那么对于第i个中间数就有L[i]*R[i]个子序列。

L,R可以通过树状数组求得。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 3e4 + 10;
int n, m, A[maxn], B[maxn], L[maxn], R[maxn];
class BIT{
public:
int tree[maxn];
void update(int pos, int val)
{
while(pos <= n)
{
tree[pos] += val;
pos += lowbit(pos);
}
}
int query(int pos)
{
int res = 0;
while(pos)
{
res += tree[pos];
pos -= lowbit(pos);
}
return res;
}
private:
int lowbit(int x)
{
return x & -x;
}
}T[2];
int Search(int x)
{
return lower_bound(B + 1, B + 1 + m, x) - B;
}
int main()
{
cin>>n;
for(int i = 1; i <= n; i++)
{
cin>>A[i];
B[i] = A[i];
}
sort(B + 1, B + 1 + n);
m = unique(B + 1, B + 1 + n) - B - 1;
for(int i = 1; i <= n; i++)
A[i] = Search(A[i]);
for(int i = 1; i <= n; i++)
{
T[0].update(A[i], 1);
L[i] = T[0].query(A[i] - 1);
}
for(int i = n; i >= 1; i--)
{
T[1].update(A[i], 1);
R[i] = n - i - T[1].query(A[i]) + 1;
}
long long ans = 0;
for(int i = 2; i < n; i++) ans += L[i] * R[i];
cout<<ans;
return 0;
}

附:

离散化模板:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e4 + 10;
int n, m, A[maxn], B[maxn];
int Search(int x)
{
return lower_bound(B + 1, B + 1 + m, x) - B;
}
int main()
{
cin>>n;
for(int i = 1; i <= n; i++)
{
cin>>A[i];
B[i] = A[i];
}
sort(B + 1, B + 1 + n);
m = unique(B + 1, B + 1 + n) - B - 1;
for(int i = 1; i <= n; i++)
A[i] = Search(A[i]);
for(int i = 1; i <= n; i++) cout<<A[i];
}

【luogu P1637 三元上升子序列】 题解的更多相关文章

  1. Luogu P1637 三元上升子序列【权值线段树】By cellur925

    题目传送门 emmm..不开结构体的线段树真香! 首先我们知道"三元上升子序列"的个数就是对于序列中的每个数,**它左边比他小的数*它右边比他大的数**.但是如何快速求出这两个数? ...

  2. 洛谷P1637 三元上升子序列

    P1637 三元上升子序列 48通过 225提交 题目提供者该用户不存在 标签云端 难度提高+/省选- 时空限制1s / 128MB 提交  讨论  题解 最新讨论更多讨论 为什么超时啊 a的数据比较 ...

  3. P1637 三元上升子序列

    thair 好,这个naive的东西因为只有三元,很好求解.只要把每个数之前小的L[i]与之后大的R[i]求一下即可. 求两次逆序对即可.那么答案便是∑(L[i]*R[i]); 对于更高元的,胡雨菲写 ...

  4. 洛谷p1637 三元上升子序列(树状数组

    题目描述 Erwin最近对一种叫"thair"的东西巨感兴趣... 在含有n个整数的序列a1,a2......an中, 三个数被称作"thair"当且仅当i&l ...

  5. luogu P1126 机器人搬重物 题解

    luogu P1126 机器人搬重物 题解 题目描述 机器人移动学会(\(RMI\))现在正尝试用机器人搬运物品.机器人的形状是一个直径\(1.6\)米的球.在试验阶段,机器人被用于在一个储藏室中搬运 ...

  6. 【Luogu P1637】 三元上升子序列

    对于每个数$a_i$,易得它对答案的贡献为 它左边比它小的数的个数$\times$它右边比它大的数的个数. 可以离散化后再处理也可以使用动态开点的线段树. 我使用了动态开点的线段树,只有需要用到这个节 ...

  7. 【洛谷P1637】三元上升子序列

    题目大意:给定一个长度为 N 的序列,求有多少个三元组满足 \(i<j<k,a_i<a_j<a_k\). 题解:这是一类二维偏序问题,与逆序对问题类似. 对于序列中每个点来说, ...

  8. BZOJ5157 & 洛谷3970:[TJOI2014]上升子序列——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5157 https://www.luogu.org/problemnew/show/P3970 给定 ...

  9. 【luogu P2491 [SDOI2011]消防】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2491 题外话: OI一共只有三种题--会的题,不会的题,二分题. 题解: step 1 求树的直径,把树的直 ...

随机推荐

  1. 为什么要把系统拆分成分布式的,为啥要用Dubbo?

    阅读本文大概需要 6 分钟. 作者:yanglbme 1.面试题 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 dubbo 可以吗? 2.面试官心里分析 从这个问题开始就进行分布式系统环节了,好 ...

  2. KSOAP2使用注意点汇总

    注意返回类型,如果是XML格式,使用 1:SoapObject soapObject = (SoapObject) envelope.getResponse(); 2:SoapObject resul ...

  3. chrome安装文件点击没有反应(收藏用)

    备份Chrome浏览器用户数据 关闭Chrome浏览器,用Windows资源管理器打开%LOCALAPPDATA%\Google,复制Chrome文件夹到其它目录.   打开程序和功能管理功能 按下W ...

  4. Luogu P2391 白雪皑皑 && BZOJ 2054: 疯狂的馒头 并查集

    4月的时候在luogu上做过 白雪皑皑 这道题,当时一遍AC可高兴了qwq,后来去了个厕所,路上忽然发现自己的做法是错的qwq...然后就咕咕了qwq 今天看到了 疯狂的馒头 ,发现一毛一样OvO.. ...

  5. Tomcat从socket到java Servlet

    整体架构图 一. 启动阶段 BootStrap的main方法加载server.xml配置文件,封装成Server,Service,Connector,Engine等java对象 Server初始化== ...

  6. 解决gap 采用increapment scn 方式 操作。

    ###########1 1.查看备库的scn ⚠️如果控制文件,数据文件,数据文件头部的scn不一致,需要根据日志中的gap的起始sequence# 找到对应的scn col  current_sc ...

  7. HDU 5734 A - Acperience

    http://acm.hdu.edu.cn/showproblem.php?pid=5734 Problem Description Deep neural networks (DNN) have s ...

  8. Java NIO基本使用介绍

    NIO主要包括Channel,Buffer,Selector三个核心元素组成. Channel即通道,l和Buffer有好几种类型.下面是JAVA NIO中的一些主要Channel的实现: FileC ...

  9. 解析和操作XML文件

    Dom4j工具 使用步骤: 1)导入dom4j的核心包. dom4j-1.6.1.jar 2)编写Dom4j读取xml文件代码 1,Domj4读取xml文件 ,准备工作:读取整个文档并获取根节点 // ...

  10. Ceres Solver: 高效的非线性优化库(二)实战篇

    Ceres Solver: 高效的非线性优化库(二)实战篇 接上篇: Ceres Solver: 高效的非线性优化库(一) 如何求导 Ceres Solver提供了一种自动求导的方案,上一篇我们已经看 ...