ZOJ1027 Travelling Fee(DP+SPFA)
给一张有向无环图,边都有花费,从某点到某点走的那条路径上的那一条花费最多的边可以省掉,问从起点到终点的最少花费的多少,
往DP想的话,就可以写出这个状态dp[u][mx],表示到达u点已经省掉的花费为mx的最少花费。
用SPFA更新转移方程。。或者理解成队列+我为人人的转移。。其实这题这样子也能解有环图。
看了别人博客,发现还有三种解法:
- 枚举每一条边作为省掉的边,n次SPFA。这方法简洁,可惜想不出= =
- 跑Dijkstra,根据记录到每一点时的最长边更新,正确性不懂。。
- Floyd+DP:加个维度,dpk[0\1][u][v],第一维1和0分别表示省和没省最长边的最少花费,dp[1]的转移就是dp[1][u][v]=min(dp[0][u][k]+dp[1][k][v],dp[1][u][k]+dp[0][k][v]),初始dp[1][i][j]=0(<i,j>∈E),好厉害。。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<string>
#include<algorithm>
using namespace std;
#define INF (1<<29)
int n,G[][];
int d[][];
bool vis[][];
struct Node{
int u,mx;
Node(int _u,int _mx):u(_u),mx(_mx){}
};
void SPFA(int vs){
for(int i=; i<n; ++i){
for(int j=; j<; ++j) d[i][j]=INF;
}
d[vs][]=;
memset(vis,,sizeof(vis));
vis[vs][]=;
queue<Node> que;
que.push(Node(vs,));
while(!que.empty()){
Node nd=que.front(); que.pop();
int u=nd.u,mx=nd.mx;
for(int v=; v<n; ++v){
if(G[u][v]==INF) continue;
if(G[u][v]>mx && d[v][G[u][v]]>d[u][mx]+mx){
d[v][G[u][v]]=d[u][mx]+mx;
if(!vis[v][G[u][v]]){
vis[v][G[u][v]]=;
que.push(Node(v,G[u][v]));
}
}
if(d[v][mx]>d[u][mx]+G[u][v]){
d[v][mx]=d[u][mx]+G[u][v];
if(!vis[v][mx]){
vis[v][mx]=;
que.push(Node(v,mx));
}
}
}
vis[u][mx]=;
}
}
int main(){
string name[],x[],y[],vs,vt;
int m,z[];
while(cin>>vs>>vt){
n=;
scanf("%d",&m);
for(int i=; i<m; ++i){
cin>>x[i]>>y[i]>>z[i];
name[n++]=x[i]; name[n++]=y[i];
}
sort(name,name+n);
n=unique(name,name+n)-name;
for(int i=; i<n; ++i){
for(int j=; j<n; ++j) G[i][j]=INF;
}
for(int i=; i<m; ++i){
int u=lower_bound(name,name+n,x[i])-name,v=lower_bound(name,name+n,y[i])-name;
G[u][v]=z[i];
}
SPFA(lower_bound(name,name+n,vs)-name);
int tv=lower_bound(name,name+n,vt)-name;
int res=INF;
for(int i=; i<; ++i) res=min(res,d[tv][i]);
printf("%d\n",res);
}
return ;
}
ZOJ1027 Travelling Fee(DP+SPFA)的更多相关文章
- ZOJ1232 Adventure of Super Mario(DP+SPFA)
dp[u][t]表示从起点出发,到达i点且用了t次magic boot时的最短时间, 方程如下: dp[v][t]=min(dp[v][t],dp[u][t]+dis[u][v]); dp[v][t] ...
- [luoguP3953] 逛公园(DP + spfa)
传送门 看到求方案数,应该很容易想到dp f[u][i]表示到点u,且比到u的最短距离多i的方案数 那么需要先预处理dis数组,spfa或者堆优化的dijk 因为考虑到dp的顺序,f[u][i]转移到 ...
- [luoguP1772] [ZJOI2006]物流运输(DP + spfa)
传送门 预处理cost[i][j]表示从第i天到第j天起点到终点的最短距离 f[i]表示前i天到从起点到终点的最短距离 f[0] = -K f[i] = min(f[i], f[j - 1] + co ...
- bzoj1003: [ZJOI2006]物流运输(DP+spfa)
1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...
- 取数字(dp优化)
取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- [Codeforces722E] Research Rover (dp+组合数学)
[Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...
- 6101 最优贸易 (双向spfa)
描述C国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的 ...
- Rikka with Subset HDU - 6092 (DP+组合数)
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some mat ...
随机推荐
- Opencv3.3.1安装包
这个资源是Opencv3.3.1安装包,包括Windows软件包,Android软件包,IOS软件包,还有opencv的源代码:需要的下载吧. 点击下载
- 决策树之CART算法
顾名思义,CART算法(classification and regression tree)分类和回归算法,是一种应用广泛的决策树学习方法,既然是一种决策树学习方法,必然也满足决策树的几大步骤,即: ...
- DAO设计模式的理解
为了降低耦合性,提出了DAO封装数据库操作的设计模式. 它可以实现业务逻辑与数据库访问相分离.相对来说,数据库是比较稳定的,其中DAO组件依赖于数据库系统,提供数据库访问的接口. 一般的DAO的封装由 ...
- C# 命名管道
有些场合需要高效率,进行线程间通信,可以使用 C#命名管道.
- cd,PATH,alias,man,快捷键
5. cd命令cd 后面不加东西,就是进入到当前用户的家目录cd ~ 这里的~符号也表示用户的家目录cd - 切换到上一次所在的目录cd . .. 其中.表示当前目录, ..表示上一级目录注意区分绝对 ...
- npm理解
NPM就是一个下载器,通过它可以下载到几乎所有你需要的代码资源.它的成功,包括如下几个方面: 海量资源:NPM背后有数以万计的开源免费模块. 高效利用:作为开发者,只需要敲几个简单的命令就可以将这些开 ...
- BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】
题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...
- vue组件中使用iframe元素
需要在本页面中展示vue组件中的超链接,地址栏不改变的方法: <template> <div class="accept-container"> <d ...
- tips 前端 点击事件
新手总是时不时会纠结一下 点击事件 我们都知道这些小东西不难 但是偶尔难道不会想想我们可能对这些即使小kiss的问题的认知其实不够清晰 一个认识不清晰的东西使用时 总会有油然而生的不安感 从而用的不放 ...
- RQNOJ 34 紧急援救
题目描述 话说2007年8月5日,Mike博士神秘失踪了,最后发现是被外星人绑架了,幸好外星人目前还是在地球上活动,并且知道外星人不了解地球,幸好,Milk博士身上有无线信号发送装置,我们终于确定了他 ...