题意:

大概意思是有 n 个点,现在有 q 个方案 ,第 i 个方案耗费为 ci ,使 Ni 个点联通 ,当然也可以直接使两点联通 ,现求最小生成树的代价。
两点直接联通的代价是欧几里得距离的平方;
 
由于0<=q<=8,所以我们考虑二进制枚举;
该位为1表示选择该方案,然后每次求一遍cost ,最后取 min 即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
}
int T;
int n, q;
int cost[maxn]; int fa[maxn];
int cnt;
vector<int>vc[maxn]; struct point {
int x, y;
}pint[maxn]; struct node {
int x, y;
int w;
}edge[maxn]; bool cmp(node a, node b) {
return a.w < b.w;
} int dis(int a, int b, int x, int y) {
return ((a - x)*(a - x) + (b - y)*(b - y));
} void init(int n) {
for (int i = 0; i <= n; i++)fa[i] = i;
} int findfa(int x) {
if (x == fa[x])return x;
return fa[x] = findfa(fa[x]);
} void Union(int p, int q) {
if (findfa(q) != findfa(p)) {
fa[findfa(p)] = findfa(q);
}
} int ans; int kruskal() {
int res = 0;
int ct = 0;
for (int i = 0; i < cnt; i++) {
int u = edge[i].x; int v = edge[i].y;
if (findfa(u) != findfa(v)) {
Union(u, v); res += edge[i].w;
ct++;
if (ct == n - 1)break;
}
}
return res;
} void sol() {
init(n);
ans = kruskal(); for (int i = 0; i < (1 << q); i++) {
init(n);int cst = 0;
for (int j = 0; j < q; j++) {
if (((i >> j) & 1)==0)continue;
cst += cost[j];
for (int k = 1; k < vc[j].size(); k++) {
Union(vc[j][k], vc[j][0]);
}
}
ans = min(ans, cst + kruskal());
}
printf("%d\n", ans);
} int main()
{
//ios::sync_with_stdio(0);
rdint(T); int kase = 1;
while (T--) {
if (kase > 1)printf("\n");
kase++;
rdint(n); rdint(q); cnt = 0;
for (int i = 0; i < 10; i++)vc[i].clear();
for (int i = 0; i < q; i++) {
int tmp; rdint(tmp); rdint(cost[i]);
while (tmp--) {
int x; rdint(x); vc[i].push_back(x);
}
} for (int i = 1; i <= n; i++) {
rdint(pint[i].x); rdint(pint[i].y);
}
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
edge[cnt].x = i; edge[cnt].y = j; edge[cnt].w = dis(pint[i].x, pint[i].y, pint[j].x, pint[j].y); cnt++;
}
}
sort(edge, edge + cnt, cmp);
sol(); } return 0;
}

Buy or Build UVA - 1151 Kruskal+枚举的更多相关文章

  1. UVA 1151二进制枚举子集 + 最小生成树

    题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...

  2. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  3. POJ(2784)Buy or Build

    Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1369   Accepted: 542 Descr ...

  4. Buy or Build (poj 2784 最小生成树)

    Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1348   Accepted: 533 Descr ...

  5. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  6. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  7. 【uva 1151】Buy or Build(图论--最小生成树+二进制枚举状态)

    题意:平面上有N个点(1≤N≤1000),若要新建边,费用是2点的欧几里德距离的平方.另外还有Q个套餐,每个套餐里的点互相联通,总费用为Ci.问让所有N个点连通的最小费用.(2组数据的输出之间要求有换 ...

  8. UVa 1151 (枚举 + MST) Buy or Build

    题意: 平面上有n个点,现在要把它们全部连通起来.现在有q个套餐,如果购买了第i个套餐,则这个套餐中的点全部连通起来.也可以自己单独地建一条边,费用为两点欧几里得距离的平方.求使所有点连通的最小费用. ...

  9. UVa 1151 - Buy or Build(最小生成树)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

随机推荐

  1. oracle connect by用法篇 (包括树遍历)之一

    1.基本语法 select * from table [start with condition1] connect by [prior] id=parentid 一般用来查找存在父子关系的数据,也就 ...

  2. 10-12C#基础--运算符

    10-12C#基础--运算符 课前作业:班级内人数的姓名和年龄,分别写出之后并汇总. 一.运算符的分类 1.数学运算符(7个) 1)+(加号) 例: 2)-(减号) 例: 3)*(乘号) 例: 4)/ ...

  3. solr通过http请求搜索

    请求搜索必要的条件是:设置搜索条件params 设置 1.简单条件 SolrParams params = new SolrQuery("name:小飞鸟 AND  id:1520" ...

  4. 面试题: 1天的java面试题 已看1

    1,自我介绍下,我直接说的项目经历,(哪年在哪个公司呆过) 2,问是否有带过团队的经历,我说去年带过一次. 3,Struts是单例模式还是多例模式?我先说单例模式,后说多例模式. Struts1是单例 ...

  5. Python-黑客-004 用Python构建一个SSH僵尸网络-02 手动与SSH交互

    用Python构建一个SSH僵尸网络-02 手动与SSH交互 - 登录SSH服务器端的 root 用户 我的电脑(攻击者)的系统:Ubuntu14.04 : 用户名: aobosir@ubuntu:~ ...

  6. 用fontcreator创建了一个半成品的字体

    下效果,哈哈. 为啥说半成品呢?因为只制作了0到9这几个字符,其他的字母.汉字.符号啥的都没有制作,唯一感觉就是字体设计是一个非常有设计感的活儿,而且需要付出很多的精力,尤其是汉字字体,常见的有6k多 ...

  7. Evil Book -- CodeChef

    传送门 分析 对于这道题,我们首先思考一个贪心策略,即对于所有我们要打败的厨师我们肯定可以先打败需使用帮助次数少的厨师再打败需使用帮助次数多的厨师 ,因为这样可以使得能支付得起帮助费用的可能性尽可能的 ...

  8. python---pyspider,报错?

    conf.json文件内容如下: { "message_queue": "redis://127.0.0.1:6379/15", "webui&quo ...

  9. Java/C++中数组的区别

    1. 数组名区别 -------------------------------------- 1. java中不用说,本着一切皆对象的原则,所以java中的数组也是对象.那么数组类是哪个,当然不是j ...

  10. Socket编程--基础(基本server/client实现)

    IPv4套接口地址结构 IPv4套接口地址结构通常也称为“网际套接字地址结构”,它以“sockaddr_in”命名,定义在头文件中 LINUX结构下的常用结构,一般创建套接字的时候都要将这个结构里面的 ...