洛谷P3648 [APIO2014]序列分割(斜率优化)
没想到这种多个状态转移的还能用上斜率优化……学到了……
首先我们可以发现,切的顺序对最终答案是没有影响的
比方说有一个序列$abc$,每一个字母都代表几个数字,那么先切$ab$再切$bc$,得分是$ab+bc+ac$,而如果先切$bc$再切$ab$,得分也是$ab+bc+ac$,不难看出得分是一样的
那么我们可以考虑一下转移方程$$dp[a][i]=max\{dp[a-1][j]+sum[j]*(sum[i]-sum[j])\}$$
其中$a$表示切几刀,$sum$表示前缀和
然后发现空间复杂度太大了,又发现每一刀的状态只与前一刀有关,那么可以用滚动数组优化
然后上面的转移是$O(n^2k)$的,那么考虑用斜率优化优化到$O(nk)$(以下省略dp的第一维)
我们假设$j>k$且$j$比$k$更优,则有$$dp[j]+sum[j]*(sum[i]-sum[j])>dp[k]+sum[k]*(sum[i]-sum[k])$$
$$(dp[j]-sum[j]^2)-(dp[k]-sum[k]^2)>sum[i]*sum[k]-sum[i]*sum[j]$$
因为$sum[k]-sum[j]$是负数,所以除的时候不等式要变号
$$\frac{(dp[j]-sum[j]^2)-(dp[k]-sum[k]^2)}{sum[k]-sum[j]}<sum[i]$$
然后直接上斜率优化
注意特判$sum[k]-sum[j]=0$,随便返回极大值或极小值
顺便注意记录路径
//minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]=' ';
}
const int N=;
int to[][N],q[N],n,k,h,t,r;
ll sum[N],dp[][N];
inline double slope(int j,int k){
if(sum[j]==sum[k]) return 1e18;
return ((dp[r^][j]-sum[j]*sum[j])-(dp[r^][k]-sum[k]*sum[k]))*1.0/(sum[k]-sum[j]);
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),k=read();
for(int i=;i<=n;++i) sum[i]=read()+sum[i-];
for(int a=;a<=k;++a){
r=a&;
h=t=;
for(int i=;i<=n;++i){
while(h<t&&slope(q[h],q[h+])<sum[i]) ++h;
to[a][i]=q[h];
dp[r][i]=dp[r^][q[h]]+sum[q[h]]*(sum[i]-sum[q[h]]);
while(h<t&&slope(q[t],q[t-])>slope(q[t-],i)) --t;q[++t]=i;
}
}
printf("%lld\n",dp[k&][n]);
for(int i=k,u=n;i;--i){
u=to[i][u];
print(u);
}
Ot();
return ;
}
洛谷P3648 [APIO2014]序列分割(斜率优化)的更多相关文章
- 洛谷 P3648 [APIO2014]序列分割 解题报告
P3648 [APIO2014]序列分割 题目描述 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的 ...
- 洛谷 P3648 [APIO2014]序列分割
题意简述 有一个长度为n的序列,分成k + 1非空的块, 选择两个相邻元素把这个块从中间分开,得到两个非空的块. 每次操作后你将获得那两个新产生的块的元素和的乘积的分数.求总得分最大值. 题解思路 f ...
- P3648 [APIO2014]序列分割 斜率优化
题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...
- bzoj3675[Apio2014]序列分割 斜率优化dp
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 3508 Solved: 1402[Submit][Stat ...
- [APIO2014]序列分割 --- 斜率优化DP
[APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...
- 洛谷3648 [APIO2014]序列分割(斜率优化+dp)
首先对于这个题目. qwq 存在一个性质就是,最终的答案只跟你的分割的位置有关,而和顺序无关. 举一个小栗子 \(a\ b\ c\) 将这个东西分成两块. 如果我们先分割\(ab\)之间的话,\(an ...
- BZOJ3675: [Apio2014]序列分割(斜率优化)
Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4186 Solved: 1629[Submit][Status][Discuss] Descript ...
- 【bzoj3675】[Apio2014]序列分割 斜率优化dp
原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...
- BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)
洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...
随机推荐
- X509 文件扩展名
编码 (也用于扩展名) .DER = 扩展名DER用于二进制DER编码的证书.这些证书也可以用CER或者CRT作为扩展名.比较合适的说法是“我有一个DER编码的证书”,而不是“我有一个DER证书”. ...
- php学习之try catch
PHP 5 添加了类似于其它语言的异常处理模块.在 PHP 代码中所产生的异常可被 throw语句抛出并被 catch 语句捕获.(注:一定要先抛才能获取) 需要进行异常处理的代码都必须放入 try ...
- The connection to adb is down and a sever error has occured的解决
1. 打开任务管理器,关掉豌豆夹等手机助手 2. 打开命令行,切换到adb所在目录,如:C:\Users\Jubincn\Downloads\adt-bundle-windows-x86_64-201 ...
- 具有避障和寻线功能的Arduino小车
标签: Arduino 乐高 机器人 创客对于成年人来说,多半是科技娱乐,或者是一种是一种向往科技的人生态度,总是希望自己不仅可以看到或者听到科技的资讯,还希望能够亲身制作科技玩意,从而更好地体 ...
- ORA-00600:内部错误代码,参数:[kpnxdcbk-2],[],[],[],[],[],[],[],[],[],[],[]
由于最近工作中常出现ORA-00600:内部错误代码,参数:[kpnxdcbk-2],[],[],[],[],[],[],[],[],[],[],[]这种异常!所以在这里讲一下我的处理方法. 笔者所遇 ...
- TS封装格式
ts流最早应用于数字电视领域,其格式非常复杂包含的配置信息表多达十几个,视频格式主要是mpeg2.苹果公司发明的http live stream流媒体是基于ts文件的,不过他大大简化了传统的ts流,只 ...
- 关于play!的attachments.path配置、以及关于Form表单上传请求的认识
相关链接 form表单提交multipart/form-data的请求分析:http://blog.csdn.net/five3/article/details/7181521.http://blog ...
- 用于.NET环境的时间测试(转)
用于.NET环境的时间测试 在.NET环境中,衡量运行完整算法所花费的时间长度,需要考虑很多 需要考虑很多种情况 ,如:程序运行所处的线程以及无用单位收集(GC垃圾回收). 在程序执行过程中无用单 ...
- 磨刀——python及相关工具
1.python语言包 1.1去https://www.python.org/,在download栏下载最新版python2或者python3 tips:1.点击下载会很慢,推荐:迅雷,百度云盘下载, ...
- sequelize 用于PostgreSQL,MySQL,SQLite和MSSQL的Node.js / io.js ORM
安装 Sequelize可通过NPM获得. $ npm install --save sequelize # And one of the following: $ npm install --sav ...