题目描述

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。
将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。

输入

第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。
接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。
可能有重边。

输出

包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。

样例输入

6 6 11
1 2 1
2 3 2
3 4 2
4 5 1
5 3 1
4 6 3

样例输出

4


solution

考虑只有边权为1的图。

拿一个矩阵G[i][j]表示i到j有多少走法。他的x次幂就是i走恰好x步到j的情况。

那么小于等于x的怎么求呢。

可以加一个计数点。把所有点向计数点连边,再加一个自环,也就是i-1步的方案也算进i步的方案。

现在考虑边权123

把每个点新建2个虚点,分别为 i+n i+n+n

如果i~j有x的边

连i+(x-1)*n~j

注意爆ll

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll unsigned long long
using namespace std;
int N,n,m;
ll goal;
ll Ans;
struct node{
ll v[][];
void cle(){
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)v[i][j]=;
}
}G,A[],ans,tmp;
node operator *(node A,node B){
node C;C.cle();
for(int i=;i<=N;i++)
for(int j=;j<=N;j++){
for(int k=;k<=N;k++){
C.v[i][j]+=A.v[i][k]*B.v[k][j];
if(C.v[i][j]>1e19){C.v[][]=-;return C;}
}
}
return C;
}
bool pd(){
if(tmp.v[][]<){return ;}
ll sum=;
for(int i=;i<=n;i++){
sum+=(tmp.v[i][N]-);
if(sum>1e19)return ;
//cout<<tmp.v[i][N]<<' ';
}
//cout<<"sum "<<sum<<endl;
return sum<goal;
}
int main(){
cin>>n>>m>>goal;N=n+n+n+;//goal+=n;
for(int i=;i<=n;i++){
G.v[i][i+n]=G.v[i+n][i+n+n]=;
G.v[i][N]=;
}
G.v[N][N]=;
for(int i=,t1,t2,t3;i<=m;i++){
scanf("%d%d%d",&t1,&t2,&t3);
G.v[t1+(t3-)*n][t2]++;
}
A[]=G; for(int i=;i<=;i++)A[i]=A[i-]*A[i-];
for(int i=;i<=n;i++)ans.v[i][i]=;
for(int i=;i>=;i--){
tmp=ans*A[i];
if(pd())ans=tmp,Ans += (1ll << i);
if(i==&&pd()){puts("-1");return ;}
}
cout<<Ans<<endl;
return ;
}
/*
2 1 1
1 2 1 */

bzoj4386 Wycieczki的更多相关文章

  1. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  2. BZOJ4386 : [POI2015]Wycieczki

    将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...

  3. BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘

    Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...

  4. BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  5. 【bzoj4386】[POI2015]Wycieczki 矩阵乘法

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  6. BZOJ4386 [POI2015]Wycieczki 矩阵+倍增

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...

  7. Wycieczki 线性代数

    B. Wycieczki 题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以 ...

  8. bzoj 4386: [POI2015]Wycieczki

    bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...

  9. [POI2015]Wycieczki

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入输出 ...

随机推荐

  1. BZOJ2752: [HAOI2012]高速公路(road)(线段树 期望)

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 736[Submit][Status][Discuss] Descripti ...

  2. 【ODT】cf896C - Willem, Chtholly and Seniorious

    仿佛没用过std::set Seniorious has n pieces of talisman. Willem puts them in a line, the i-th of which is ...

  3. BeanUtils工具的实现

    BeanUtils工具的实现 自定义一个将数据映射到类里的方法 方法一: package utils; import java.lang.reflect.Field; import java.lang ...

  4. Linux下使用指定网卡进行ping操作

    目录   1. 为什么要使用知道那个网卡ping操作   2. 使用指定网卡ping操作   3. 总结 1. 为什么要使用指定网卡ping操作 现在很多服务器都拥有双网卡甚至多网卡,有些是为了保持高 ...

  5. 【nginx】root alias 区别,以及server root , location root 区别

    nginx-root-alias-详解 最近在研究前后端分离站点配置在同一域名下,发现root,alias有区别,而且所有的root如果都放置在location下面访问无效的问题,才有此总结,本文只是 ...

  6. strak组件(6):列表定制列应用和引入静态文件

    效果图: 新增函数 def get_choice_text(title, field) 闭包函数,显示choice字段 def inner(self, obj=None, is_header=None ...

  7. Android 数据库中的数据给到ListView

    前言:因为之前学的都是用一个自己定义的类,完成将某一个bean中的数据直接获取,而实际中通常是通过数据库来得到的,总之,最终就是要得到数据.提一下最重要的东西,我把它叫做代理,如同一个校园代理,没有他 ...

  8. c语言printf()输出格式大全(转载)

    1.转换说明符      %a(%A)     浮点数.十六进制数字和p-(P-)记数法(C99)      %c             字符      %d             有符号十进制整 ...

  9. JsBridge "Uncaught TypeError: Cannot call method 'callHandler' of undefined", source

    h5和原生结合开发app越来越流行.其实就是webview 的js调用native的方法.也就是需要搭建一个桥.这样的桥早就有人搭建好了,那就是jsbridge. git地址: https://git ...

  10. bootstrap设计进度条和圆点

    1.设计进度条.文字前面的圆点和图片 2.思路: (1)设计进度条 (a) 进度条有滚动效果,要加上类.active (b)进度条的颜色通过类.progress-bar-success来写,可以写成. ...