Description

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

Input

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

Output

输出每个询问的结果

Sample Input

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

Sample Output

1
2
1

HINT

【样例说明】

第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1

的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是

1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3

大的数是 1 。‍

N,M<=50000,N,M<=50000

a<=b<=N

1操作中abs(c)<=N

2操作中abs(c)<=Maxlongint

一直不是很理解树套树是个什么鬼。
题解告诉我此题为线段树套线段树。一维维护权值,二维维护区间。
精髓还没有领悟到,果真我还是很弱QWQ
 #include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
int a,b,c;
int n,m,sz;
int root[];
int ls[],rs[],sum[],lazy[];
void pushdown(int k,int l,int r){
if ((!lazy[k])||l==r) return;//如果没标记或者已经到了底层
if (!ls[k])ls[k]=++sz;
if (!rs[k])rs[k]=++sz;
int mid=(l+r)>>;
lazy[ls[k]]+=lazy[k];lazy[rs[k]]+=lazy[k];
sum[ls[k]]+=(mid-l+)*lazy[k];
sum[rs[k]]+=(r-mid)*lazy[k];
lazy[k]=;
} void modify(int &k,int l,int r,int a,int b){
if (!k)k=++sz;
pushdown(k,l,r);
if (a==l&&b==r){
lazy[k]++;
sum[k]+=(r-l+);
return;
}
int mid=(l+r)>>;
if (a>mid) modify(rs[k],mid+,r,a,b);
else if (b<=mid) modify(ls[k],l,mid,a,b);
else modify(ls[k],l,mid,a,mid),modify(rs[k],mid+,r,mid+,b);
sum[k]=sum[ls[k]]+sum[rs[k]];
} void insert(){
int l=,r=n,k=;
while (l!=r){
modify(root[k],,n,a,b);
int mid=(l+r)>>;
if (c>mid)l=mid+,k=k<<|;
else r=mid,k=k<<;
}
modify(root[k],,n,a,b);
} int query(int k,int l,int r,int a,int b){
if (!k) return ;
pushdown(k,l,r);
if (a==l&&b==r)return sum[k];
int mid=(l+r)>>;
if (a>mid) return query(rs[k],mid+,r,a,b);
else if (b<=mid) return query(ls[k],l,mid,a,b);
else return query(ls[k],l,mid,a,mid)+query(rs[k],mid+,r,mid+,b);
} int solve(){
int l=,r=n,k=;
while (l!=r){
int t=query(root[k<<],,n,a,b);
int mid=(l+r)>>;
if (t>=c)r=mid,k=k<<;
else l=mid+,k=k<<|,c-=t;
}
return l;
} int main(){
freopen("sj.txt","r",stdin);
freopen("me.txt","w",stdout);
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++){
int f;
scanf("%d%d%d%d",&f,&a,&b,&c);
if (f==)c=n-c+,insert();
else printf("%d\n",n-solve()+);
}
}

【bzoj3110】[Zjoi2013]K大数查询的更多相关文章

  1. BZOJ3110[Zjoi2013]K大数查询(树状数组+整体二分)

    3110 [Zjoi2013]K大数查询 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a ...

  2. BZOJ3110 [Zjoi2013]K大数查询 树套树 线段树 整体二分 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3110 题意概括 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位 ...

  3. BZOJ3110: [Zjoi2013]K大数查询

    喜闻乐见的简单树套树= =第一维按权值建树状数组,第二维按下标建动态开点线段树,修改相当于第二维区间加,查询在树状数组上二分,比一般的线段树还短= =可惜并不能跑过整体二分= =另外bzoj上的数据有 ...

  4. [BZOJ3110][ZJOI2013]K大数查询(整体二分)

    BZOJ Luogu sol 整体二分,其实很简单的啦. 对所有询问二分一个答案mid,把所有修改操作中数字大于mid的做一个区间覆盖(区间加1) 查询就是区间查询 然后左右分一分即可 注意是第k大 ...

  5. BZOJ3110[Zjoi2013]K大数查询——权值线段树套线段树

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...

  6. bzoj3110: [Zjoi2013]K大数查询 【树套树,标记永久化】

    //========================== 蒟蒻Macaulish:http://www.cnblogs.com/Macaulish/  转载要声明! //=============== ...

  7. bzoj3110 [Zjoi2013]K大数查询——线段树套线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 外层权值线段树套内层区间线段树: 之所以外层权值内层区间,是因为区间线段树需要标记下传 ...

  8. bzoj3110: [Zjoi2013]K大数查询 【cdq分治&树套树】

    模板题,折腾了许久. cqd分治整体二分,感觉像是把询问分到答案上. #include <bits/stdc++.h> #define rep(i, a, b) for (int i = ...

  9. BZOJ3110:[ZJOI2013]K大数查询(整体二分)

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  10. 【树套树】bzoj3110 [Zjoi2013]K大数查询

    题解很多,实现起来以外地简洁.内层的区间线段树上用了标记永久化. #include<cstdio> using namespace std; #define N 50001 struct ...

随机推荐

  1. HDU 1058 Humble Numbers (DP)

    Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  2. [改善Java代码]列表相等只需关系元素数据

    来看一个判断列表相等的例子,看代码: import java.util.ArrayList; import java.util.Vector; public class Client { public ...

  3. Java中final变量的初始化方式

    原文转自:http://blog.csdn.net/zhangjk1993/article/details/24196847 public class FinalTest1 { //--------- ...

  4. Java Classloader原理分析

       类的加载过程指通过一个类的全限定名来获取描述此类的二进制字节流,并将其转化为方法区的数据结构,进而生成一个java.lang.Class对象作为方法区这个类各种数据访问的入口.这个过程通过Jav ...

  5. PL/SQL Developer连接远程Oracle数据库

    转自:http://zhengdu.net/archives/152 一.首先看远程端oracle服务是否启动 如果没有启动,请启动oracle服务 ps:创建或者删除oracle监听 二.远程端or ...

  6. .net求两个数的最大公约数和最小公倍数

    最大公约数:指两个或多个整数共有约束中最大的一个. 最小公倍数:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个. /// <s ...

  7. SQL Server的三种物理连接之Loop Join(一)

    Sql Server有三种物理连接Loop Join,Merge Join,Hash Join, 当表之间连接的时候会选择其中之一,不同的连接产生的性能不同,理解这三种物理连接对性能调优有很大帮助. ...

  8. MVC 提交表单

    public ActionResult UserLogin() { var UserName = Request["username"]; var Password = Reque ...

  9. insert---插入记录

    insert into table_name (column1,column2,.......) values(value1,value2,......); 例: insert into userin ...

  10. MSSQL 数字钱转化为大写

    --说明: --1.本函数范围从 毫 ~ 兆 --2.有四种精度(元,角 ,分,厘 ,毫) --3.有三种进位规则(四舍五入,接舍去,非0就入) --参数说明:dbo.MoneyToCapital( ...