【bzoj3110】[Zjoi2013]K大数查询
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1
的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是
1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3
大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中abs(c)<=Maxlongint
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
int a,b,c;
int n,m,sz;
int root[];
int ls[],rs[],sum[],lazy[];
void pushdown(int k,int l,int r){
if ((!lazy[k])||l==r) return;//如果没标记或者已经到了底层
if (!ls[k])ls[k]=++sz;
if (!rs[k])rs[k]=++sz;
int mid=(l+r)>>;
lazy[ls[k]]+=lazy[k];lazy[rs[k]]+=lazy[k];
sum[ls[k]]+=(mid-l+)*lazy[k];
sum[rs[k]]+=(r-mid)*lazy[k];
lazy[k]=;
} void modify(int &k,int l,int r,int a,int b){
if (!k)k=++sz;
pushdown(k,l,r);
if (a==l&&b==r){
lazy[k]++;
sum[k]+=(r-l+);
return;
}
int mid=(l+r)>>;
if (a>mid) modify(rs[k],mid+,r,a,b);
else if (b<=mid) modify(ls[k],l,mid,a,b);
else modify(ls[k],l,mid,a,mid),modify(rs[k],mid+,r,mid+,b);
sum[k]=sum[ls[k]]+sum[rs[k]];
} void insert(){
int l=,r=n,k=;
while (l!=r){
modify(root[k],,n,a,b);
int mid=(l+r)>>;
if (c>mid)l=mid+,k=k<<|;
else r=mid,k=k<<;
}
modify(root[k],,n,a,b);
} int query(int k,int l,int r,int a,int b){
if (!k) return ;
pushdown(k,l,r);
if (a==l&&b==r)return sum[k];
int mid=(l+r)>>;
if (a>mid) return query(rs[k],mid+,r,a,b);
else if (b<=mid) return query(ls[k],l,mid,a,b);
else return query(ls[k],l,mid,a,mid)+query(rs[k],mid+,r,mid+,b);
} int solve(){
int l=,r=n,k=;
while (l!=r){
int t=query(root[k<<],,n,a,b);
int mid=(l+r)>>;
if (t>=c)r=mid,k=k<<;
else l=mid+,k=k<<|,c-=t;
}
return l;
} int main(){
freopen("sj.txt","r",stdin);
freopen("me.txt","w",stdout);
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++){
int f;
scanf("%d%d%d%d",&f,&a,&b,&c);
if (f==)c=n-c+,insert();
else printf("%d\n",n-solve()+);
}
}
【bzoj3110】[Zjoi2013]K大数查询的更多相关文章
- BZOJ3110[Zjoi2013]K大数查询(树状数组+整体二分)
3110 [Zjoi2013]K大数查询 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a ...
- BZOJ3110 [Zjoi2013]K大数查询 树套树 线段树 整体二分 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3110 题意概括 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位 ...
- BZOJ3110: [Zjoi2013]K大数查询
喜闻乐见的简单树套树= =第一维按权值建树状数组,第二维按下标建动态开点线段树,修改相当于第二维区间加,查询在树状数组上二分,比一般的线段树还短= =可惜并不能跑过整体二分= =另外bzoj上的数据有 ...
- [BZOJ3110][ZJOI2013]K大数查询(整体二分)
BZOJ Luogu sol 整体二分,其实很简单的啦. 对所有询问二分一个答案mid,把所有修改操作中数字大于mid的做一个区间覆盖(区间加1) 查询就是区间查询 然后左右分一分即可 注意是第k大 ...
- BZOJ3110[Zjoi2013]K大数查询——权值线段树套线段树
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...
- bzoj3110: [Zjoi2013]K大数查询 【树套树,标记永久化】
//========================== 蒟蒻Macaulish:http://www.cnblogs.com/Macaulish/ 转载要声明! //=============== ...
- bzoj3110 [Zjoi2013]K大数查询——线段树套线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 外层权值线段树套内层区间线段树: 之所以外层权值内层区间,是因为区间线段树需要标记下传 ...
- bzoj3110: [Zjoi2013]K大数查询 【cdq分治&树套树】
模板题,折腾了许久. cqd分治整体二分,感觉像是把询问分到答案上. #include <bits/stdc++.h> #define rep(i, a, b) for (int i = ...
- BZOJ3110:[ZJOI2013]K大数查询(整体二分)
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- 【树套树】bzoj3110 [Zjoi2013]K大数查询
题解很多,实现起来以外地简洁.内层的区间线段树上用了标记永久化. #include<cstdio> using namespace std; #define N 50001 struct ...
随机推荐
- 自动化中的PageObject思想
谈着这个话题很大,因为我自己在自动化分层的方面做的就不是很好,最近在做java+selenium中,如果不分层去管理,代码就显得很乱,如下: 下面代码主要是做了一个登录,登录后在修改自己的一些个人信息 ...
- IIS部署网站局域网内无法访问
今天在局域网发布一个网站时遇到了个问题,在本机上可以访问,但局域网内其他机子访问此IP地址时无法显示,这个问题以前也遇到过,现在总结一下处理方法 检查两个方面: IIS网站身份验证 在IIS中选择要发 ...
- Android 第三方授权(微信篇)
0.申请开发者: https://open.weixin.qq.com/cgi-bin/frame?t=home/app_tmpl&lang=zh_CN 1.下载sdk包: https://o ...
- 自己封装的SqlHelper
using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...
- Ant 修改项目pom.xml文件应用
<?xml version="1.0" encoding="UTF-8"?> <project name="project" ...
- Xcode修改项目名称教程
http://wenku.baidu.com/view/4e939b1cf61fb7360a4c653b
- 【转载】应广大群众的要求,今天开始连载《超容易的Linux系统管理入门书》一书
学习Linux容易嘛?我说超容易,你肯定不信.那学习Linux最好的学习方法是什么,就是脑子里面一直提问题,不停的提,时时刻刻提,如果你没有问题,那再容易的学习书你也看不懂. <超容易的Linu ...
- UVaLive 3708
题意:周长为10000的圆上等距分布n个雕塑,求再加入m个雕塑后,为使所有雕塑等距分布所需移动原来n个雕塑的最小总距离. 分析:计算相对距离. #include<cstdio> #incl ...
- (poj 3177) Redundant Paths
题目链接 :http://poj.org/problem?id=3177 Description In order to <= F <= ,) grazing fields (which ...
- TransparentBlt函数的使用注意事项
今天客户需要在软件上需要添加一个自己公司的Logo,要求使用镂空透明的形式展现,本来以为很简单的工作没想到在MFC下这么复杂.Logo为BMP格式,白色背景. 以为和在按钮上显示控件差不多,先导入BI ...