What we learned in Seoul with AlphaGo

March 16, 2016
Go isn’t just a game—it’s a living, breathing culture of players, analysts, fans, and legends.
Over the last 10 days in Seoul, South Korea, we’ve been lucky enough to witness some of
that incredible excitement firsthand. We've also had the chance to see something that's never
happened before: DeepMind's AlphaGo took on and defeated legendary Go player,
Lee Sedol (9-dan professional with 18 world titles), marking a major milestone for artificial
intelligence.

Pedestrians checking in on the AlphaGo vs. Lee Sedol Go match on the streets of Seoul (March 13)

Go may be one of the oldest games in existence, but the attention to our five-game tournament

exceeded even our wildest imaginations. Searches for Go rules and Go boards spiked in the U.S.
In China, tens of millions watched live streams of the matches, and the
“Man vs. Machine Go Showdown”
hashtag saw 200 million pageviews on Sina Weibo. Sales of Go boards even surged in Korea.

Our public test of AlphaGo, however, was about more than winning at Go. We founded DeepMind

in 2010 to create general-purpose artificial intelligence (AI) that can learn on its own—and, eventually,
be used as a tool to help society solve some of its biggest and most pressing problems, from
climate change to disease diagnosis.

Like many researchers before us, we've been developing and testing our algorithms through games.

We first revealed AlphaGo in January—the first AI program that could beat a professional player at
the most complex board game mankind has devised, using deep learning and reinforcement learning.
The ultimate challenge was for AlphaGo to take on the best Go player of the past decade—Lee Sedol.

To everyone's surprise, including ours, AlphaGo won four of the five games. Commentators noted

that AlphaGo played many unprecedented, creative, and even“beautiful” moves. Based on our
data, AlphaGo’s bold move 37 in Game 2 had a 1 in 10,000 chance of being played by a human.
Lee countered with innovative moves of his own, such as his move 78 against AlphaGo
in Game 4—again, a 1 in 10,000 chance of being played—which ultimately resulted in a win.

The final score was 4-1. We're contributing the $1 million in prize money to organizations that

support science, technology, engineering and math (STEM) education and Go, as well as UNICEF.

We’ve learned two important things from this experience. First, this test bodes well for AI’s potential

in solving other problems. AlphaGo has the ability to look “globally” across a board—and find solutions
that humans either have been trained not to play or would not consider. This has huge potential for
using AlphaGo-like technology to find solutions that humans don’t necessarily see in other areas.
Second, while the match has been widely billed as "man vs. machine," AlphaGo is really a human
achievement. Lee Sedol and the AlphaGo team both pushed each other toward new ideas,
opportunities and solutions—and in the long run that's something we all stand to benefit from.

But as they say about Go in Korean: “Don’t be arrogant when you win or you’ll lose your luck.”

This is just one small, albeit significant, step along the way to making machines smart. We’ve
demonstrated that our cutting edge deep reinforcement learning techniques can be used to
make strong Go and Atari players. Deep neural networks are already used at Google for specific
tasks—like image recognitionspeech recognition, and Search ranking. However, we’re still a long
way from a machine that can learn to flexibly perform the full range of intellectual tasks
a human can—the hallmark of trueartificial general intelligence.

Demis and Lee Sedol hold up the signed Go board from the Google DeepMind Challenge Match

With this tournament, we wanted to test the limits of AlphaGo. The genius of Lee Sedol did

that brilliantly—and we’ll spend the next few weeks studying the games he and AlphaGo played
in detail. And because the machine learning methods we’ve used in AlphaGo are general purpose,
we hope to apply some of these techniques to other challenges in the future. Game on!

Posted by Demis Hassabis, CEO and Co-Founder of DeepMind

What we learned in Seoul with AlphaGo的更多相关文章

  1. AlphaGo:用机器学习技术古老的围棋游戏掌握AlphaGo: Mastering the ancient game of Go with Machine Learning

    AlphaGo: Mastering the ancient game of Go with Machine Learning Posted by David Silver and Demis Has ...

  2. (转)The AlphaGo Replication Wiki

    The AlphaGo Replication Wiki 摘自:https://github.com/Rochester-NRT/RocAlphaGo/wiki/01.-Home Contents : ...

  3. 世界围棋人机大战、顶峰对决第一盘:围棋世界冠军Lee Sedol(李世石,围棋职业九段)对战Google DeepMind AlphaGo围棋程序

    Match 1 - Google DeepMind Challenge Match: Lee Sedol vs AlphaGo 很多网站对世界围棋大战进行了现场直播,比如YouTube.新浪.乐视.腾 ...

  4. Elasticsearch Mantanence Lessons Learned Today

    Today I troubleshooted an Elasticsearch-cluster-down issue. Several lessons were learned: When many ...

  5. 也谈谈AlphaGo

    距离AlphaGo击败李世石已经过去数月了,心中的震撼至今犹在,全刊报道此项比赛的<围棋天地>杂志我已经看了不下十遍.总也想说点自己的意见,却也不知道从哪里说起,更不知道想表达些什么. 作 ...

  6. 人机大战之AlphaGo的硬件配置和算法研究

    AlphaGo的硬件配置 最近AlphaGo与李世石的比赛如火如荼,关于第四盘李世石神之一手不在我们的讨论范围之内.我们重点讨论下AlphaGo的硬件配置: AlphaGo有多个版本,其中最强的是分布 ...

  7. (转) 一张图解AlphaGo原理及弱点

    一张图解AlphaGo原理及弱点 2016-03-23 郑宇,张钧波 CKDD 作者简介: 郑宇,博士, Editor-in-Chief of ACM Transactions on Intellig ...

  8. 曲率已驱动了头发——深度分析谷歌AlphaGo击败职业棋手

    这篇是我们自开设星际随笔以来写得最长的一篇.我们也花了不少力气.包括把那5盘棋各打了两遍的谱,包括从Nature官网上把那篇谷歌的报告花了200元下载下来研究它的算法(后来发现谷 歌网站上可以免费下载 ...

  9. 田渊栋:AlphaGo系统即使在单机上也有职业水平

    Facebook人工智能组研究员田渊栋博士在知乎专栏上更新了一篇文章,详细分析了AlphaGo在<自然>杂志上发表的论文,他认为AlphaGo整个系统即使在单机上也已具有了职业水平,与李世 ...

随机推荐

  1. HTML-块级元素和内联元素

    HTML-块级元素和内联元素 块级元素 内联元素 address - 地址 block - 块引用 center - 居中对齐块(不推荐) dir - 目录列表(HTML5踢出) div - 常用的不 ...

  2. 【转载】Apache kafka原理与特性(0.8V)

    http://blog.csdn.net/xiaolang85/article/details/37821209 前言: kafka是一个轻量级的/分布式的/具备replication能力的日志采集组 ...

  3. WCF简介

    WCF(Windows communication Foundation),顾名思义,就是在windows平台下解决通信的基础框架.WCF做为.NET Framework 3.0的一个组件发布出来的, ...

  4. JAVA HttpsURLConnection 忽略对SSL valid 的验证

    有时候我们对https进行测试的时候,经常自签署一个证书给server,这个certificate经常是不能通过验证的,但是我们又要用这个https,所以我们经常来忽略对SSL validation的 ...

  5. C/C++ union

    叙述原因: union data{ int a;double b;}; 对于union,实际中用的并不多,之前也知道怎样计算union的单元(在字对齐的基础上取最大成员所占的内存大小),比如 unio ...

  6. ECSSHOP表结构

    ECSSHOP表结构 -- 表的结构 `ecs_account_log`CREATE TABLE IF NOT EXISTS `ecs_account_log` (`log_id` mediumint ...

  7. 译文:javascript function中的this

    个人理解+google翻译.如有错误,请留言指正.原文来自MDN: this 简介 Javascript中一个函数的this关键字的行为相对其它语言有些不同.在严格模式和非严格模式间也有区别. 在大多 ...

  8. C# Json数据反序列化为Dictionary并根据关键字获取指定值

    Json数据: { "dataSet": { "header": { "returnCode": "0", " ...

  9. [WinForm]DataGridView列自适应

    关键代码: /// <summary> /// 根据cell内容调整其宽度 /// </summary> /// <param name="girdview&q ...

  10. 如何使用Git——(一)

    一.git与github git 是一款自由和开源的分布式版本控制系统,用于敏捷高效地处理任何或大或小的项目. github 是一个网站,给用户提供git仓库托管服务,是开源代码库以及版本控制系统.在 ...