题目链接:

题目

E. Three States

time limit per test:5 seconds

memory limit per test:512 megabytes

问题描述

The famous global economic crisis is approaching rapidly, so the states of Berman, Berance and Bertaly formed an alliance and allowed the residents of all member states to freely pass through the territory of any of them. In addition, it was decided that a road between the states should be built to guarantee so that one could any point of any country can be reached from any point of any other State.

Since roads are always expensive, the governments of the states of the newly formed alliance asked you to help them assess the costs. To do this, you have been issued a map that can be represented as a rectangle table consisting of n rows and m columns. Any cell of the map either belongs to one of three states, or is an area where it is allowed to build a road, or is an area where the construction of the road is not allowed. A cell is called passable, if it belongs to one of the states, or the road was built in this cell. From any passable cells you can move up, down, right and left, if the cell that corresponds to the movement exists and is passable.

Your task is to construct a road inside a minimum number of cells, so that it would be possible to get from any cell of any state to any cell of any other state using only passable cells.

It is guaranteed that initially it is possible to reach any cell of any state from any cell of this state, moving only along its cells. It is also guaranteed that for any state there is at least one cell that belongs to it.

输入

The first line of the input contains the dimensions of the map n and m (1 ≤ n, m ≤ 1000) — the number of rows and columns respectively.

Each of the next n lines contain m characters, describing the rows of the map. Digits from 1 to 3 represent the accessory to the corresponding state. The character '.' corresponds to the cell where it is allowed to build a road and the character '#' means no construction is allowed in this cell.

输出

Print a single integer — the minimum number of cells you need to build a road inside in order to connect all the cells of all states. If such a goal is unachievable, print -1.

样例

input

4 5

11..2

..22

.323

.#333

output

2

input

1 5

1#2#3

output

-1

题意

1,2,3代表三个州,'.'可以修路,'#'不可以修路,让你建最少的路把三个州连通起来,(数据保证每个州都是连通的)

题解

对三个州分别跑一遍最短路,然后枚举每个点,计算以这个点为公共节点的路的最小花费。

注意:由于有连通块,跑最短路的时候普通的bfs是错的,需要用dijkstra之类的最短路算法去跑,如果用优先队列+bfs跑的话,一定要松弛!(因为有长度为0的边!)其实这样也就是相当于是dijkstra了。

错误代码:(最短路算法出错了)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define X first
#define Y second
#define mp make_pair
using namespace std; const int maxn = 1000 + 10;
int INF = 0x3f3f3f3f; char str[maxn][maxn]; int d[maxn][maxn][3];
bool inq[maxn][maxn][3];
typedef __int64 LL;
int n, m; struct Heap {
int x, y, d;
Heap(int x, int y, int d) :x(x), y(y), d(d) {}
bool operator < (const Heap& tmp) const {
return d > tmp.d;
}
}; const int dx[] = { -1,1,0,0 };
const int dy[] = { 0,0,-1,1 };
void bfs(pair<int, int> s, int k) {
priority_queue<Heap> Q;
d[s.X][s.Y][k] = 0;
Q.push(Heap(s.X,s.Y,0));
while (!Q.empty()) {
Heap u = Q.top(); Q.pop();
for (int i = 0; i<4; i++) {
int nx = u.x + dx[i], ny = u.y + dy[i];
if (nx<0 || nx >= n || ny<0 || ny >= m) continue;
if (str[nx][ny] == '#'||d[nx][ny][k]<INF) continue;
if (str[nx][ny] != str[u.x][u.y] || (str[nx][ny]==str[u.x][u.y])&&str[nx][ny] == '.') {
//这里要加松弛!!!
d[nx][ny][k] = d[u.x][u.y][k] + 1;
Q.push(Heap(nx,ny,d[nx][ny][k]));
}
else {
d[nx][ny][k] = d[u.x][u.y][k];
Q.push(Heap(nx,ny,d[nx][ny][k]));
}
}
}
} int main() {
scanf("%d%d", &n, &m);
memset(d, 0x3f, sizeof(d)); INF = d[0][0][0];
memset(inq, 0, sizeof(inq));
for (int i = 0; i<n; i++) scanf("%s", str[i]);
for (int i = 0; i<n; i++) {
for (int j = 0; j<m; j++) {
if (str[i][j] >= '1'&&str[i][j] <= '3') {
int ch = str[i][j] - '1';
if (d[i][j][ch] >= INF) {
bfs(mp(i, j), ch);
}
}
}
}
//for (int k = 0; k < 3; k++) {
// for (int i = 0; i<n; i++) {
// for (int j = 0; j<m; j++) {
// if (d[i][j][k] >= INF) printf("-1 ");
// else printf("%02d ", d[i][j][k]);
// }
// puts("");
// }
// puts("\n");
//}
int ans = INF;
for (int i = 0; i<n; i++) {
for (int j = 0; j<m; j++) {
if (str[i][j] == '#') continue;
if (d[i][j][0] >= INF || d[i][j][1] >= INF || d[i][j][2] >= INF) continue;
ans = min((LL)ans, (LL)d[i][j][0] + d[i][j][1] + d[i][j][2] - 2);
}
}
if(ans<INF) printf("%d\n", ans);
else puts("-1");
return 0;
}

正解:(dijkstra)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define X first
#define Y second
#define mp make_pair
using namespace std; const int maxn = 1000 + 10;
const int INF = 1e7; char str[maxn][maxn]; int d[maxn][maxn][3];
int n, m; struct Heap {
int x, y, d;
Heap(int x, int y, int d) :x(x), y(y), d(d) {}
bool operator < (const Heap& tmp) const {
return d > tmp.d;
}
}; const int dx[] = { -1,1,0,0 };
const int dy[] = { 0,0,-1,1 };
int done[maxn][maxn];
void bfs(int xs,int ys, int k) {
memset(done,0,sizeof(done));
priority_queue<Heap> Q;
d[xs][ys][k] = 0;
Q.push(Heap(xs,ys,0));
while (!Q.empty()) {
Heap u = Q.top();
Q.pop();
if(done[u.x][u.y]) continue;
done[u.x][u.y]=1;
for (int i = 0; i<4; i++) {
int nx = u.x + dx[i], ny = u.y + dy[i];
if (nx<0 || nx >= n || ny<0 || ny >= m) continue;
if (str[nx][ny] == '#') continue;
if (str[nx][ny]==str[u.x][u.y]&&str[u.x][u.y]!='.') {
if(d[nx][ny][k] > d[u.x][u.y][k]) {
d[nx][ny][k] = d[u.x][u.y][k];
Q.push(Heap(nx,ny,d[nx][ny][k]));
}
} else {
if(d[nx][ny][k] >d[u.x][u.y][k] + 1) {
d[nx][ny][k] = d[u.x][u.y][k] + 1;
Q.push(Heap(nx,ny,d[nx][ny][k]));
}
}
}
}
} int main() {
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
for (int k = 0; k < 3; k++) {
d[i][j][k] = INF;
}
}
}
scanf("%d%d", &n, &m);
for (int i = 0; i<n; i++) scanf("%s", str[i]);
for (int i = 0; i<n; i++) {
for (int j = 0; j<m; j++) {
if (str[i][j] >= '1'&&str[i][j] <= '3') {
int ch = str[i][j] - '1';
if (d[i][j][ch] >= INF) {
bfs(i,j, ch);
}
}
}
}
int ans = INF;
for (int i = 0; i<n; i++) {
for (int j = 0; j<m; j++) {
if (str[i][j] == '#') continue;
if (d[i][j][0] >= INF || d[i][j][1] >= INF || d[i][j][2] >= INF) continue;
ans = min(ans, d[i][j][0] + d[i][j][1] + d[i][j][2] - 2);
}
}
if(ans<INF) printf("%d\n", ans);
else puts("-1");
return 0;
}

Codeforces Round #327 (Div. 2) E. Three States的更多相关文章

  1. Codeforces Round #327 (Div. 2) E. Three States BFS

    E. Three States Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/probl ...

  2. 暴搜 - Codeforces Round #327 (Div. 2) E. Three States

    E. Three States Problem's Link Mean: 在一个N*M的方格内,有五种字符:'1','2','3','.','#'. 现在要你在'.'的地方修路,使得至少存在一个块'1 ...

  3. Codeforces Round #327 (Div. 1) C. Three States

    C. Three States time limit per test 5 seconds memory limit per test 512 megabytes input standard inp ...

  4. E. Three States - Codeforces Round #327 (Div. 2) 590C States(广搜)

    题目大意:有一个M*N的矩阵,在这个矩阵里面有三个王国,编号分别是123,想知道这三个王国连接起来最少需要再修多少路. 分析:首先求出来每个王国到所有能够到达点至少需要修建多少路,然后枚举所有点求出来 ...

  5. Codeforces Round #327 (Div. 2) A. Wizards' Duel 水题

    A. Wizards' Duel Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/prob ...

  6. Codeforces Round #327 (Div. 2) D. Chip 'n Dale Rescue Rangers 二分 物理

    D. Chip 'n Dale Rescue Rangers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/co ...

  7. Codeforces Round #327 (Div. 2) C. Median Smoothing 找规律

    C. Median Smoothing Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/p ...

  8. Codeforces Round #327 (Div. 2) B. Rebranding 水题

    B. Rebranding Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/problem ...

  9. Codeforces Round #327 (Div. 1), problem: (A) Median Smoothing

    http://codeforces.com/problemset/problem/590/A: 在CF时没做出来,当时直接模拟,然后就超时喽. 题意是给你一个0 1串然后首位和末位固定不变,从第二项开 ...

随机推荐

  1. Chromium浏览器高级开发系列第一篇:如何获取最新chromium源码

    背景:     最近摊上一个事儿,领导非要让写一篇技术文章,思来想去,自己接触chrome浏览器时间也不短了,干脆就总结一下吧.于是乎,本文顺理成章.由于有些细节必需描述清楚,所以这次先讲如何拿到ch ...

  2. java中vector与hashtable操作详解

    众所周知,java中vector与hashtable是线程安全的,主要是java对两者的操作都加上了synchronized,也就是上锁了.因此 在vector与hashtable的操作是不会出现问题 ...

  3. [老老实实学WCF] 第五篇 再探通信--ClientBase

    老老实实学WCF 第五篇 再探通信--ClientBase 在上一篇中,我们抛开了服务引用和元数据交换,在客户端中手动添加了元数据代码,并利用通道工厂ChannelFactory<>类创 ...

  4. Regsvr32注册ActiveX控件

    命令:Regsvr32 XX.dll 注册ActiveX控件 Regsvr32命令参数:/u 卸载ActiveX控件/s 注册成功后不显示操作成功信息框/c 控制台输出/I 调用DllInstall安 ...

  5. UI4_LabelChess

    // // AppDelegate.m // UI4_LabelChess // // Created by zhangxueming on 15/6/29. // Copyright (c) 201 ...

  6. C++ 11 之Lambda

    1.Lambda表达式来源于函数式编程,说白就了就是在使用的地方定义函数,有的语言叫“闭包”,如果 lambda 函数没有传回值(例如 void ),其回返类型可被完全忽略. 定义在与 lambda ...

  7. USB时钟为什么是48MHz

        在学习2440的USB配置时钟中,发现它的时钟需要设置成48MHz固定的,这个我就来兴趣了,为什么这里面USB的时钟一定要是48M呢?在网上找了众多文章,都是讲解如何配置2440的MPLL和U ...

  8. Less 导入命令 @import

    在这个less文件上想导入另一个less文件, 连在同级的文件里直接可用文件名 @import url('css.less')或@import rul(css) 连下级的文件 @import url( ...

  9. NSS_04 extjs中grid接收datetime类型参数列

    今天在做用户列表时发现, asp.net mvc3的控制器在返回JsonResult结果时, 会把对象内的DateTime类型成员,解析为类似于\/Date(1238606590509)\/的格式 , ...

  10. android的入门学习

    android 入门学习. 活动:就是一个包含应用程序的用户界面的窗口.目的就是与用户交互. 意图:就是能够将来自不同应用程序的不同活动无缝连接在一起工作的"胶水",确保这些任务执 ...