莫比乌斯反演

  PoPoQQQ讲义第二题。

  暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了……

  为什么去掉了一个memset就不T了→_→……

 /**************************************************************
Problem: 2820
User: Tunix
Language: C++
Result: Accepted
Time:4368 ms
Memory:167304 kb
****************************************************************/ //BZOJ 2820
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std; int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>'') {if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<='') {v=v*+ch-''; ch=getchar();}
return v*=sign;
}
/*******************tamplate********************/
const int N=;
typedef long long LL;
int mu[N],prime[N],g[N],sum[N];
bool check[N]; void getmu(){
int tot=;
mu[]=;
for(int i=;i<N;i++){
if (!check[i]){
prime[tot++]=i;
mu[i]=-;
}
rep(j,tot){
if(i*prime[j]>=N)break;
check[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
else
mu[i*prime[j]]=-mu[i];
}
}
rep(j,tot)
for(int i=prime[j];i<N;i+=prime[j])
sum[i]+=mu[i/prime[j]];//对于每个质数,枚举它的倍数
for(int i=;i<N;i++) sum[i]+=sum[i-];
} int main(){
getmu();
int T=getint();
LL ans;
while(T--){
int n=getint(),m=getint();
if(n>m) swap(n,m);
ans=;
for(int i=,last;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(LL)(n/i)*(m/i)*(sum[last]-sum[i-]);
}
printf("%lld\n",ans);
}
return ;
}

2820: YY的GCD

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 918  Solved: 467
[Submit][Status][Discuss]

Description

神犇YY虐完数论后给傻×kAc出了一题
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对
kAc这种傻×必然不会了,于是向你来请教……
多组输入

Input

第一行一个整数T 表述数据组数
接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2
10 10
100 100

Sample Output

30
2791

HINT

T = 10000

N, M <= 10000000

Source

[Submit][Status][Discuss]

【BZOJ】【2820】YY的GCD的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  4. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

  5. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  6. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  7. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  8. BZOJ 2820 YY的GCD(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...

  9. bzoj 2820 YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻× ...

  10. ●BZOJ 2820 YY的GCD

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1 ...

随机推荐

  1. XAPI(XenAPI)

      转载:http://www.cnblogs.com/dkblog/archive/2011/07/07/2099885.html 初识toolstack--XEN的XenServer管理的核心 什 ...

  2. asp.net判断访问者是否来自移动端

    主要就是通过客户端传递的User-agent来判断访问网站的客户端是PC还是手机. .NET中就是Request.ServerVariables["HTTP_USER_AGENT" ...

  3. ORACLE-树状数据结构获取各层级节点信息

    平时工作中出报表时,要求分别列出员工的一级部门,二级部门....,在数据库中,部门表(unit)的设计一般为在表中维护每个部门的上级部门(pid字段),或者通过一个关联表(unit_link)维护层级 ...

  4. Ajax请求ashx 返回 json 格式数据常见问题

    问题:ashx 返回的字符串json格式,在前台ajax自动解析失败. 问题分析:经过排查,发现是拼接json时出现” ’  “单引号,jquery无法解析,用” “ “双引号才可以.例如: stri ...

  5. dropdownlist值改变时调用js

    DropDownList的OnSelectedIndexChanged方法是服务器端方法如要用需要设置AutoPostBack选项为true,并且在服务器后台写方法 要调用js方法需要onchange ...

  6. 20150511---Timer计时器(备忘)

    private void timer1_Tick(object sender, EventArgs e) { TimeSpan ts = , , ); string str = ts.Hours + ...

  7. GForms展现服务云开发平台

    GForms完全基于开放标准,使用XForms作为面向服务的架构简单易用的前端,帮助用户跨多个行业加速数据整合.GForms提供可视化设计器,实现展现服务开发中数据与模型完全分离,加快开发速度快速投入 ...

  8. JAVA:类,对象,成员属性,成员方法,构造方法,类变量,类方法<2>

    一.类的定义 一个全面的类定义是比较复杂的,  定义如下:

  9. (转)Yale CAS + .net Client 实现 SSO(6)

    第一部分:安装配置 Tomcat 第二部分:安装配置 CAS 第三部分:实现 ASP.NET WebForm Client 第四部分:实现基于数据库的身份验证 第五部分:扩展基于数据库的身份验证 第六 ...

  10. hadoop数据流转过程分析

    hadoop:数据流转图(基于hadoop 0.18.3):通过一个最简单的例子来说明hadoop中的数据流转. hadoop:数据流转图(基于hadoop 0.18.3): 这里使用一个例子说明ha ...