[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9
(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues. For Hermitian operators, the first statement says that $W(A)$ is the close interval whose endpoints are the smallest and the largest eigenvalues of $A$.
(2). If a unit vector $x$ belongs to the linear span of the eigenspaces corresponding to eigenvalues $\lm_1,\cdots,\lm_k$ of a normal operator $A$, then $\sef{x,Ax}$ lies in the convex hull of $\lm_1,\cdots,\lm_k$. (This fact will be used frequently in Chapter III.)
Solution.
(1). When $A$ is normal, by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and thus $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{x^*U\diag(\lm_1,\cdots,\lm_n)U^*x;\sen{x}=1}\\ &=\sed{\sum_{i=1}^n \lm_i|y_i|^2; \sum_{i=1}^n |y_i|^2=1,\ y=U^*x}\\ &=\co\sed{\lm_1,\cdots,\lm_n}. \eea \eeex$$
(2). Let $u_1,\cdots,u_k$ be the first $k$ column vector of $U$, then $$\bex Au_i=\lm_iu_i,\quad 1\leq i\leq k. \eex$$ If $$\bex x=\sum_{i=1}^k x_iu_i,\quad \sen{x}=1\ra \sum_{i=1}^k |x_i|^2=1, \eex$$ then $$\beex \bea \sef{x,Ax}&=\sef{\sum_{i=1}^k x_iu_i,A\sum_{j=1}^k x_ju_j}\\ &=\sef{\sum_{i=1}^k x_iu_i,\sum_{j=1}^k\lm_j x_ju_j}\\ &=\sum_{i=1}^k |x_i|^2\lm_i\\ &\in \co\sed{\lm_1,\cdots,\lm_k}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- IOS项目集成ShareSDK实现第三方登录、分享、关注等功能(备用)
(1)官方下载ShareSDK iOS 2.8.8,地址:http://sharesdk.cn/ (2)根据实际情况,引入相关的库,参考官方文档. (3)在项目的AppDelegate中一般情况下有三 ...
- SSH开发框架搭建参考
一, 参考文章: 1, http://blog.csdn.net/communicate_/article/details/8644040 这篇文章讲的还算详尽,但是貌似有一些多余的代码: 2,
- WCF 绑定的选择
选自<WCF服务编程中文版> 第一章 WCF基础 绑定服务之间的通信方式是多种多样的,有多种可能的通信模式.包括:同步的请求/ 应答(Request/Reply)消息,或者异步的“即发即弃 ...
- TaskTracker执行map或reduce任务的过程(二)
上次说到,当MapLauncher或ReduceLancher(用于执行任务的线程,它们扩展自TaskLauncher),从它们所维护的LinkedList也即队列中获取到TaskInProgress ...
- 用MT.exe将exe中的manifest文件提取出来和将manifest文件放入exe中
前一种方法是将manifest文件放入exe中,但是要记得需要在工程中设置 这样的话exe中就不存在manifest了,在debug目录下就会看到相应的manifest文件.后者是将exe中的man ...
- SDUT2190救基友记1
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2190 思路 : 这个题,一开始以为是博弈,以为 ...
- php析构函数
<?php class Page { function __destruct() { echo "__destruct methor invokes<br>"; ...
- Jquery-DataTable 使用介绍
http://dt.thxopen.com/example/server_side/simple.html
- BZOJ 3997 TJOI2015 组合数学
分析一下样例就可以知道,求的实际上是从左下角到右上角的最长路 因为对于任意不在这个最长路的上的点,都可以通过经过最长路上的点的路径将这个点的价值减光 (可以用反证法证明) 之后就是一个非常NOIP的D ...
- 前阿里CEO卫哲谈阿里创业经验:如何找人、找钱、找方向?(不同的阶段分别有:时间优先、金额优先、比例优先,不要做平台,太难)
新浪科技李根 整理报道 卫哲现在是御嘉基金的创始合伙人,他另一个更加知名的身份是阿里巴巴(B2B)前CEO,在2006年到2011年的时间里,卫哲见证了阿里巴巴如何利用人才.资本和方向选择一路壮大. ...