(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues. For Hermitian operators, the first statement says that $W(A)$ is the close interval whose endpoints are the smallest and the largest eigenvalues of $A$.

(2). If a unit vector $x$ belongs to the linear span of the eigenspaces corresponding to eigenvalues $\lm_1,\cdots,\lm_k$ of a normal operator $A$, then $\sef{x,Ax}$ lies in the convex hull of $\lm_1,\cdots,\lm_k$. (This fact will be used frequently in Chapter III.)

Solution.

(1). When $A$ is normal, by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and thus $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{x^*U\diag(\lm_1,\cdots,\lm_n)U^*x;\sen{x}=1}\\ &=\sed{\sum_{i=1}^n \lm_i|y_i|^2; \sum_{i=1}^n |y_i|^2=1,\ y=U^*x}\\ &=\co\sed{\lm_1,\cdots,\lm_n}. \eea \eeex$$

(2). Let $u_1,\cdots,u_k$ be the first $k$ column vector of $U$, then $$\bex Au_i=\lm_iu_i,\quad 1\leq i\leq k. \eex$$ If $$\bex x=\sum_{i=1}^k x_iu_i,\quad \sen{x}=1\ra \sum_{i=1}^k |x_i|^2=1, \eex$$ then $$\beex \bea \sef{x,Ax}&=\sef{\sum_{i=1}^k x_iu_i,A\sum_{j=1}^k x_ju_j}\\ &=\sef{\sum_{i=1}^k x_iu_i,\sum_{j=1}^k\lm_j x_ju_j}\\ &=\sum_{i=1}^k |x_i|^2\lm_i\\ &\in \co\sed{\lm_1,\cdots,\lm_k}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. (转)使用Migrations更新数据库结构(Code First )

    原文地址:http://blog.csdn.net/luoyeyu1989/article/details/8275237 背景 code first起初当修改model后,要持久化至数据库中时,总要 ...

  2. C语言基础(转载自大海笔记)

    # C语言基础2015年03月26日10:04:411.    语言排行榜C——java——objective-C2.    进制:进制:进位机制.用普通的话讲,应该为人为的定义一种度量来标识一样东西 ...

  3. window live writer的曲折安装过程

           之前一直使用windows live writer2012写日志,由于之前重装了系统,所以需要重新安装writer,本以为是一个很简单的过程,你就是安装个软件吗.... 然而事实是... ...

  4. winform保存登录cookie

       在web程序中,我们通常使会使用cookie来保存一些用户状态,或者权限或者你想保存的东西,但是在CS程序中,如果要使用cookie就必须要做些功课了... 最好注意以下几点:   1.使用成员 ...

  5. vim查看函数原型以及关闭窗口

    问题描述:         vim中查看函数原型,以及关闭vim窗口 问题解决:      (1)查看函数原型            使用Shift+K可以查看用户手册      (2)自定义函数   ...

  6. CSS的定位属性实现text-shadow属性的文本下产生阴影效果

    只要先理解text-shadow的原理,就能用定位元素进行效果的模仿. text-shadow: h-shadiv v-shadov blur color h-shadv为文本水平移动的距离,正值相对 ...

  7. jQuery,javascript获得网页的高度和宽度

    网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽: document.body.offsetWi ...

  8. Python 开源异步并发框架的未来

    http://segmentfault.com/a/1190000000471602 开源 Python 是开源的,介绍的这几个框架 Twisted.Tornado.Gevent 和 tulip 也都 ...

  9. DJANGO结合jQuery cxSelect 作二级菜单过滤

    EN,到这个阶段,基本功能算是完成了. 使用了jQuery cxSelect这个插件. http://code.ciaoca.com/jquery/cxselect/ 相关代码如下: html: &l ...

  10. Ubuntu环境下手动配置tomcat

    配置tomcat 前提条件:JDK已配置. (配置JDK:http://www.cnblogs.com/xxx0624/p/4164744.html) 1. 下载tomcat(http://tomca ...