(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues. For Hermitian operators, the first statement says that $W(A)$ is the close interval whose endpoints are the smallest and the largest eigenvalues of $A$.

(2). If a unit vector $x$ belongs to the linear span of the eigenspaces corresponding to eigenvalues $\lm_1,\cdots,\lm_k$ of a normal operator $A$, then $\sef{x,Ax}$ lies in the convex hull of $\lm_1,\cdots,\lm_k$. (This fact will be used frequently in Chapter III.)

Solution.

(1). When $A$ is normal, by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and thus $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{x^*U\diag(\lm_1,\cdots,\lm_n)U^*x;\sen{x}=1}\\ &=\sed{\sum_{i=1}^n \lm_i|y_i|^2; \sum_{i=1}^n |y_i|^2=1,\ y=U^*x}\\ &=\co\sed{\lm_1,\cdots,\lm_n}. \eea \eeex$$

(2). Let $u_1,\cdots,u_k$ be the first $k$ column vector of $U$, then $$\bex Au_i=\lm_iu_i,\quad 1\leq i\leq k. \eex$$ If $$\bex x=\sum_{i=1}^k x_iu_i,\quad \sen{x}=1\ra \sum_{i=1}^k |x_i|^2=1, \eex$$ then $$\beex \bea \sef{x,Ax}&=\sef{\sum_{i=1}^k x_iu_i,A\sum_{j=1}^k x_ju_j}\\ &=\sef{\sum_{i=1}^k x_iu_i,\sum_{j=1}^k\lm_j x_ju_j}\\ &=\sum_{i=1}^k |x_i|^2\lm_i\\ &\in \co\sed{\lm_1,\cdots,\lm_k}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Android模拟神器Genymotion eclipse插件安装问题出解决

    我之前一直是打开eclipse之前直接运行Genymotion模拟器就可以连接到adb了,非常方便,但最近突然想来装个eclipse的Genymotion插件玩玩,安装时居然出错了,于是不折腾好心里不 ...

  2. TWaver初学实战——如何在TWaver属性表中添加日历控件?

    在日期输入框中添加日历控件,是一种非常流行和实用的做法.临渊羡鱼不如退而写代码,今天就看看在TWaver中是如何实现的.   资源准备   TWaver的在线使用文档中,就有TWaver Proper ...

  3. Angular与React的一些看法

    Angular - React之争 Angular和React无疑是目前最受追捧的两个前端框架,谷歌也发现Angular1.x不足的地方,开始开发2.0版本,脸书发现React的组件化和虚拟DOM非常 ...

  4. HTML标签<b>与<strong>以及<i>与<em>的区别

    在一般情况下,<b>和<strong>标签的显示效果一样,<i>和<em>标签的显示效果一样.那么它们的区别在哪呢?我们应该使用哪种标签呢? 在w3sc ...

  5. 查网卡信息(千M o 万M)

  6. hibernateTemplate的load方法

    hibernateTemplate的load方法采用延迟加载,所以应当注意. 如果配置不当,采用此方法获取对象,往往会出现异常: javax.servlet.ServletException: org ...

  7. [转载]C#导入XLS数据到数据库

    Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--> ...

  8. source code analyzer 功能强大的C/C++源代码分析软件 Celerity CRACK 破解版

    特色 迅捷是一个功能强大的C/C++源代码分析软件.可以处理数百万行的源程序代码.支持标准及K&R风格的C/C++.对每一个打开的源代码工程,通过建立一个包含丰富交叉引用关系的数据库,显示其所 ...

  9. SDUT2190救基友记1

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2190 思路 : 这个题,一开始以为是博弈,以为 ...

  10. linux查看历史命令history

    在linux下,我们有可能需要查看最近执行过的命令(历史命令),我们可以进行如下操作: # 显示使用过的所有历史命令 $ history # 显示最近使用的5个命令 $ history 5 我们可以通 ...