最大类间方差法(Otsu)
由Otsu(大津展之)于1978年提出的最大类间方差法,是引起较多关注的一种阈值选取方法。它是在判决分析或最小二乘原理的基础上推导出来的。
参考文献:
[1] Otsu N. A threshold selection method from gray-level histogram. IEEE Trans,1979;SMC-9;62-66 下载地址
算法思想:
假设一幅图像有L个灰度级[1,2,…,L]。灰度级为i的像素点的个数为ni,那么总的像素点个数就应该为N=n1+n2+…+nL。为了讨论方便,我们使用归一化的灰度级直方图并且视为这幅图像的概率分布:

现在假设我们通过一个灰度级为k的门限将这些像素点划分为两类:C0和C1(背景和目标,或者反之亦然);C0表示灰度级为[1,…,k]的像素点,C1表示灰度级为[k+1,…,L]的像素点。那么,每一类出现的概率以及各类的平均灰度级分别由下面的式子给出:

以及

其中,

分别为灰度级从1到k的累积出现概率和平均灰度级(一阶累积矩),而

是整幅图像的平均灰度级。我们可以很容易验证,对于任意选定的k,都有:

这两类的类内方差由下面的公式给出:

这需要二阶累积矩(second-order cumulative moment,统计学概念)。
为了评价(灰度级k)这个门限“好”的程度,我们需要引入判别式分析中使用的判别式标准来测量(类的分离性测量):

其中:

又根据式(9),可以得出:

这三个式子分别是类内方差、类间方差和灰度级的总方差。然后,我们的问题就简化为一个优化问题,即寻找一个门限k使(12)式中给出的一个目标函数取最大值。
这个观点是出于这样一个猜想,一个好的阈值将会把灰度级分为两类,那么反过来说,就是如果一个门限能够在灰度级上将图像分割为最好的两类的话,那么这个门限就是最好的门限。
上面给出的判别式标准是分别求取λ、κ和η的最大值。然而,对于κ而言,它又等于另外一个,比如κ=λ+1;而对于λ而言,又有η=λ/(λ+1),因为始终存在下面的基本关系:



效果展示:









算法评价:
就最大类间方差算法而言,优点是算法简单,当目标与背景的面积相差不大时,能够有效地对图像进行分割。但是,当图像中的目标与背景的面积相差很大时,表现为直方图没有明显的双峰,或者两个峰的大小相差很大,分割效果不佳,或者目标与背景的灰度有较大的重叠时也不能准确的将目标与背景分开。导致这种现象出现的原因是该方法忽略了图像的空间信息,同时该方法将图像的灰度分布作为分割图像的依据,因而对噪声也相当敏感。所以,在实际应用中,总是将其与其他方法结合起来使用。
最大类间方差法(Otsu)的更多相关文章
- OpenCV2.x自学笔记——最大类间方差法OTSU
推荐用法:(参数勿动) threshold(gray,binary,0,255,CV_THRESH_OTSU+CV_THRESH_BINARY);
- 图像二值化----otsu(最大类间方差法、大津算法)
最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法,又叫大津 法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间的类间方差越大,说明构成图像 ...
- 自适应阈值二值化之最大类间方差法(大津法,OTSU)
最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间 ...
- Otsu 类间方差法
又称最大类间方差法.是由日本学者大津(Nobuyuki Otsu)于1979年提出的[1],是一种自适合于双峰情况的自动求取阈值的方法.又叫大津法,简称Otsu. 算法提出初衷是是按图像的灰度特性 ...
- 大津法---OTSU算法
简介: 大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出.从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景 ...
- iOS设计模式 - (2)UML类间关系精解
在正式讲设计模式之前, 介绍一下UML类图之间的关系还是非常有必要的, 由于一些教程, 书籍, 包含我之后的文章, 都会大量使用类图, 去描写叙述各个类之间的关系.这是一种非常直观, 简约的方式. 当 ...
- UML 有关类图知识及类间关系
原文链接:https://blog.csdn.net/mj_ww/article/details/53020346 1. 类的含义 类图(Class diagram)显示了系统的静态结构,而系统的静态 ...
- UML(一) 类图及类间关系
原创文章,同步发自作者个人博客,http://www.jasongj.com/uml/class_diagram/ UML类图 UML类图介绍 在UML 2.*的13种图形中,类图是使用频率最高的UM ...
- 类间调用inline函数的效率
问题描述: class A { public: int x, y, k, NY; inline int f(int i, int j, int k) {return ((i)*(NY + 1) * ...
随机推荐
- 【转】简明vim练级攻略
本文来自:http://coolshell.cn/articles/5426.html vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一 ...
- linux文件 编辑常用 inux手把手vi ---针对文件操作
命令语法 说明 使用频率(1:常用;2一般:3:偶尔) 1.VI编辑器的启动与退出 VI编辑器的启动与退出 vi file1 新建一个文本文件名为file1 :q 退出,如果对缓存去进行过修改,则提 ...
- swfupload详细参数
SWFUpload的初始化与配置 首先,在页面中引用SWFUpload.js ,如<script type=”text/javascript” src=”http://www.swfupload ...
- lshw 命令(查看硬件信息)
帮助 $ lshw -h Hardware Lister (lshw) - B.02.16 usage: lshw [-format] [-options ...] lshw -version -ve ...
- AngularJS中在前后端分离模式下实现权限控制 - 基于RBAC
一:RBAC 百科解释: 基于角色的访问控制(Role-Based Access Control)作为传统访问控制(自主访问,强制访问)的有前景的代替受到广泛的关注.在RBAC中,权限与角色相关联,用 ...
- linux版本的区分
linux每个版本有好几种方式,刚学习的时候还不明白,了解了一下终于知道了 如下,以CentOS为例 1.CentOS系统镜像有两个,安装系统只用到第一个镜像即CentOS-6.x-i386-bin- ...
- 【高级JEE技术】JMX
JMX即Java Manager Extentin(java 管理扩展)一种动态改变javabean属性值的技术,具体应用场景可以有很多.比如使用JMX作为线上应用的开关,在做一些新老系统改造的时候 ...
- 【MINA】序列化和反序列化我们要考虑的问题
概念 序列化:将java对象转换为字节序列的过程叫做序列化 反序列化:将字节对象转换为java对象的过程叫做反序列化 要解决的问题 1.序列化时间 2.反序列化时间 3.bytes大小 4.操作方便 ...
- 【HTML XHTML CSS基础教程(第6版)】笔记之HTML XHTML笔记(1~6章)
第1章 网页的构造块 1.(X)HTML有三种主要的标记类型:元素,属性,值. 2.浏览器主要通过查看文件的扩展名(.htm或.html)来得知应该按照网页的方式读取文本文件. 3.H ...
- SQL SERVER 与ACCESS、EXCEL的数据导入导出转换
* 说明:复制表(只复制结构,源表名:a 新表名:b) select * into b from a where 1<>1 * 说明:拷贝表(拷贝数据,源表名:a 目标表名:b) ...