Clarke and problem

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=5464

Description

克拉克是一名人格分裂患者。某一天,克拉克分裂成了一个学生,在做题。
突然一道难题难到了克拉克,这道题是这样的:
给你nn个数,要求选一些数(可以不选),把它们加起来,使得和恰好是pp的倍数(00也是pp的倍数),求方案数。
对于nn很小的时候,克拉克是能轻易找到的。然而对于nn很大的时候,克拉克没有办法了,所以来求助于你。

Input

第一行一个整数T(1 \le T \le 10)T(1≤T≤10),表示数据的组数。
每组数据第一行是两个正整数n, p(1 \le n, p \le 1000)n,p(1≤n,p≤1000)。
接下来的一行有nn个整数a_i(|a_i| \le 10^9)a​i​​(∣a​i​​∣≤10​9​​),表示第ii个数。

Output

对于每组数据,输出一个整数,表示问题的方案数,由于答案很大,所以求出对10^9+710
​9
​​ +7的答案即可。

Sample Input

1
2 3
1 2

Sample Output

2

HINT

题意

题解:

设d(i, j)d(i,j)表示前ii个数,模pp为jj的方案数,则容易得到d(0, 0)=1, d(i, j)=d(i-1, j)+\sum_{j=0}^{p-1} d(i-1, (j-a[i]) \ mod \ p)d(0,0)=1,d(i,j)=d(i−1,j)+∑​j=0​p−1​​d(i−1,(j−a[i]) mod p),很多人没1a是因为没注意|a_i| \le 10^9∣a​i​​∣≤10​9​​

代码:

//qscqesze
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 1006
#define mod 1000000007
#define eps 1e-9
#define PI acos(-1)
const double EP = 1E- ;
int Num;
//const int inf=0x7fffffff;
const ll inf=;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************* ll dp[maxn][maxn];
ll p,a[maxn]; int main()
{
int t;scanf("%d",&t);
for(int cas=;cas<=t;cas++)
{
int n;scanf("%d%I64d",&n,&p);
for(int i=;i<=n;i++)
scanf("%I64d",&a[i]);
for(int i=;i<=n;i++)
{
a[i]%=p;
if(a[i]<)a[i]+=p;
}
memset(dp,,sizeof(dp));
dp[][]=;
for(int i=;i<=n;i++)
{
for(int j=;j<p;j++)
{
if(!dp[i-][j])continue;
dp[i][j]=(dp[i][j]+dp[i-][j])%mod;
dp[i][(j+a[i])%p] = (dp[i][(j+a[i])%p]+dp[i-][j])%mod;
}
}
printf("%I64d\n",dp[n][]%mod);
}
}

hdu 5464 Clarke and problem dp的更多相关文章

  1. HDU 5464 Clarke and problem 动态规划

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5464 Clarke and problem  Accepts: 130  Submissions: ...

  2. dp hdu 5464 Clarke and problem

    Problem Description Clarke is a patient with multiple personality disorder. One day, Clarke turned i ...

  3. HDU 5464 ( Clarke and problem ) (dp)

    dp[i][j] := 前i个数和为j的情况(mod p) dp[i][j] 分两种情况 1.不选取第i个数 -> dp[i][j] = dp[i-1][j] 2.   选取第i个数 -> ...

  4. HDU 5628 Clarke and math dp+数学

    Clarke and math 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5628 Description Clarke is a patient ...

  5. HDU 5629 Clarke and tree dp+prufer序列

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=562 题意: 求给每个节点的度数允许的最大值,让你求k个节点能组成的不同的生成树个数. 题解: 对于n ...

  6. HDU 2993 MAX Average Problem dp斜率优化

    MAX Average Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  7. HDU 5464:Clarke and problem

    Clarke and problem  Accepts: 130  Submissions: 781  Time Limit: 2000/1000 MS (Java/Others)  Memory L ...

  8. BestCoder Round #56 1002 Clarke and problem 1003 Clarke and puzzle (dp,二维bit或线段树)

    今天第二次做BC,不习惯hdu的oj,CE过2次... 1002 Clarke and problem 和Codeforces Round #319 (Div. 2) B Modulo Sum思路差不 ...

  9. HDU 5628 Clarke and math——卷积,dp,组合

    HDU 5628 Clarke and math 本文属于一个总结了一堆做法的玩意...... 题目 简单的一个式子:给定$n,k,f(i)$,求 然后数据范围不重要,重要的是如何优化这个做法. 这个 ...

随机推荐

  1. shorter concat [reverse longer]

    shorter concat [reverse longer] Description: Given 2 strings, a and b, return a string of the form:  ...

  2. URAL1501. Sense of Beauty(记忆化)

    链接 dfs+记忆化 对于当前状态虽然满足和差 但如果搜下去没有满足的情况也是不可以的 所以需要记忆化下 #include <iostream> #include<cstdio> ...

  3. UVa 1642 (综合) Magical GCD

    题意: 给出一个数列,求一个连续的子序列,使得MGCD(i, j) =  该子序列的长度(j-i+1) × 子序列的gcd 最大,并输出这个最大值. 分析: 感觉可能要用优先队列,但貌似也用不上. 但 ...

  4. mysqldump使用

    mysqldump常用于MySQL数据库逻辑备份. 1.各种用法说明 A. 最简单的用法: mysqldump -uroot -pPassword [database name] > [dump ...

  5. 如何卸载eclipse中的ADT

    卸载ADT的方法,方法如下: 1.选择 Help > Install New Software: 2.在"Details" 面板中, 点击"What is alre ...

  6. [JS前端开发] js/jquery控制页面动态加载数据 滑动滚动条自动加载事件

    页面滚动动态加载数据,页面下拉自动加载内容 相信很多人都见过瀑布流图片布局,那些图片是动态加载出来的,效果很好,对服务器的压力相对来说也小了很多 有手机的相信都见过这样的效果:进入qq空间,向下拉动空 ...

  7. Gradle使用手册(一):为什么要用Gradle?

    原文地址:http://tools.android.com/tech-docs/new-build-system/user-guide#TOC-Using-sourceCompatibility-1. ...

  8. Hessian介绍

    Hessian是什么   Hessian类似Web Service,是一种高效简洁的远程调用框架. Hessian的主页:http://hessian.caucho.com/   有关网上的对Hess ...

  9. mysql 交叉表

    交叉表,但在MySQL中却没有这个功能,但网上看到有不少朋友想找出一个解决方法,特发贴集思广义.http://topic.csdn.net/u/20090530/23/0b782674-4b0b-4c ...

  10. bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...