Searching a 2D Sorted Matrix Part I
Write an efficient algorithm that searches for a value in an n x m table (two-dimensional array). This table is sorted along the rows and columns — that is,
Table[i][j] ≤ Table[i][j + 1],
Table[i][j] ≤ Table[i + 1][j]
Solution:
1. STEP 方法:
Start in the bottom-left corner of your matrix. Then go to the right until you find the exact number (done), or until you find a number that is bigger.
Then you go upwards in the matrix until you find the exact number (done), or until you find a number that is too small.
Then again you move to the right, ... and so on until you found the number or until you reach the right-side or top of your matrix.
The following images contain some examples, using an Excel table showing the target number in green, and the path that is followed in yellow.
In the last example we look for 207, which isn't in the matrix:
This is just the algorithm. The coding is left for you as an exercise :-)
EDIT: When starting on the bottom row, a binary search might give a better starting point. For the rest of the algorithm it probably doesn't matter.
Step-wise Linear Search:
We call this the Step-wise Linear Search method. Similar to Diagonal Binary Search, we begin with the upper right corner (or the bottom left corner). Instead of traversing diagonally each step, we traverse one step to the left or bottom. For example, the picture below shows the traversed path (the red line) when we search for 13.
Essentially, each step we are able to eliminate either a row or a column. The worst case scenario is where it ended up in the opposite corner of the matrix, which takes at most 2n steps. Therefore, this algorithm runs in O(n) time, which is better than previous approaches.

Below is the code and it is simple and straight to the point. You should not make any careless mistake during the interview.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
boolstepWise(intmat[][N_MAX],intN,inttarget,
int&row,int&col){
if(target<mat[0][0]||target>mat[N-1][N-1])returnfalse;
row=0;
col=N-1;
while(row<=N-1&&col>=0){
if(mat[row][col]<target)
row++;
elseif(mat[row][col]>target)
col--;
else
returntrue;
}
returnfalse;
}
|
This is probably the answer that most interviewers would be looking for. But we will not stop here. Let us continue exploring some more interesting solutions.
2. 分治。
Quad Partition:
Did you realize that this problem is actually solvable using a divide and conquer approach? I bet you did!
First, we make an observation that the center element always partition the matrix into four smaller matrices. For example, the center element 9 partitions the matrix into four matrices as shown in the picture below. Since the four smaller matrices are also sorted both row and column-wise, the problem can naturally be divided into four sub-problems.
If you notice carefully, we are always able to eliminate one of the four sub-problems in each step. Assume our target is21, which is greater than the center element 9. We can eliminate the upper left quadrant instantly, because all elements in that quadrant are always less than or equal to 9. Now assume our target is 6, which is less than 9.
Similarly, we eliminate the bottom right quadrant from consideration, because elements in that quadrant must all be greater than 9. Please note however, we still need to search the upper right and bottom left quadrant, even though the example below seems to show all elements in the two mentioned quadrants are greater than 9.
Of course, if the center element is our target element, we have found the target and stop searching. If not, we proceed by searching the rest of three quadrants.

What’s the complexity of the Quad Partition method? As it turns out, the run time complexity could be written directly as a recurrence relation:
T(n) = 3T(n/2) + c, where n is the dimension of the matrix.
We add a constant c because each step we do a comparison between the target element and the center element, which takes some constant time.
We need to solve the above equation to obtain the complexity. This is where most confusion comes in. If you have taken advanced algorithm course, you could solve it using the Master’s theorem, but you don’t really need to. You could just expand the recurrence relation directly to solve it.
Below is the code for the Quad Partition method. l and u represents the upper left corner, while r and d represents the bottom right corner of the matrix. Be very careful of corner cases. Please note that the code below checks for when lequals r (left = right) and u equals d (up = down) (ie, the matrix has only one element). If this only element differs from the target, the function must return false. If you omit this condition, then the code below never terminates, which in other word translates to: You never double check your code, and it is Hasta la vista, baby from your interviewer.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
boolquadPart(intmat[][N_MAX],intM,intN,inttarget,intl,intu,intr,intd,int&targetRow,int&targetCol){
if(l>r||u>d)returnfalse;
if(target<mat[u][l]||target>mat[d][r])returnfalse;
intcol=l+(r-l)/2;
introw=u+(d-u)/2;
if(mat[row][col]==target){
targetRow=row;
targetCol=col;
returntrue;
}elseif(l==r&&u==d){
returnfalse;
}
if(mat[row][col]>target){
returnquadPart(mat,M,N,target,col+1,u,r,row,targetRow,targetCol)||
quadPart(mat,M,N,target,l,row+1,col,d,targetRow,targetCol)||
quadPart(mat,M,N,target,l,u,col,row,targetRow,targetCol);
}else{
returnquadPart(mat,M,N,target,col+1,u,r,row,targetRow,targetCol)||
quadPart(mat,M,N,target,l,row+1,col,d,targetRow,targetCol)||
quadPart(mat,M,N,target,col+1,row+1,r,d,targetRow,targetCol);
}
}
boolquadPart(intmat[][N_MAX],intN,inttarget,int&row,int&col){
returnquadPart(mat,N,N,target,0,0,N-1,N-1,row,col);
}
|
3.Binary Partition:
We can even reduce the number of sub-problems from three to only two using a method we called Binary Partition. This time we traverse along either the middle row, middle column, or diagonally (as shown in highlighted gray cells in imagesa), b), and c) below). As we traverse, we find the point such that the target element s satisfies the following condition:
ai < s < ai+1, where ai is the i
th
traversed cell.



If the target element equals one of the traversed cells, we immediately return the element as found. Otherwise we partition the matrix into two sub-matrices following the partition point we found. As it turns out, we need cn time (linear time) to find such partition point, since we are essentially performing a linear search. Therefore, the complexity could be written as the following recurrence relation: (Note: I omitted the proof, as it is left as an exercise to the reader. )
T(n) = 2T(n/2) + cn
= O(n lg n)
The Binary Partition algorithm runs in O(n lg n) time. You might expect its complexity to be lower than Quad Partition, since it has only two sub-problems (instead of three) to solve. The reason of the higher order complexity is due to the extra O(n) time doing a linear search for the partition point where ai < s < ai+1.
Please note that the matrix is not necessarily divided into two equal-sized sub-matrices. One of the matrix could be bigger than the other one, or in the extreme case, the other matrix could be of size zero. Here, we have made an assumption that each partition step divides the matrix into two equal-sized sub-matrices, just for the sake of complexity analysis.
Below is the code for the Binary Partition method. The code below chooses the middle column as the place to search for the partition point.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
boolbinPart(intmat[][N_MAX],intM,intN,inttarget,intl,intu,intr,intd,int&targetRow,int&targetCol){
if(l>r||u>d)returnfalse;
if(target<mat[u][l]||target>mat[d][r])returnfalse;
intmid=l+(r-l)/2;
introw=u;
while(row<=d&&mat[row][mid]<=target){
if(mat[row][mid]==target){
targetRow=row;
targetCol=mid;
returntrue;
}
row++;
}
returnbinPart(mat,M,N,target,mid+1,u,r,row-1,targetRow,targetCol)||
binPart(mat,M,N,target,l,row,mid-1,d,targetRow,targetCol);
}
boolbinPart(intmat[][N_MAX],intN,inttarget,int&row,int&col){
returnbinPart(mat,N,N,target,0,0,N-1,N-1,row,col);
}
|
4.
Improved Binary Partition: 在遍历中间那一row / column 时使用二分 来找。
Since the partition column (or row, or diagonal) is sorted, not utilizing the sorted configuration is a waste. In fact, we are able to modify binary search to search for the partition point in lg n time. Then, the complexity can be expressed as the following recurrence relation: (Note: I’ve omitted some steps, try to work out the math by yourself)
By incorporating binary search, we are able to reduce the complexity to O(n). However, we have made an assumption, that is: Each subdivision of matrices must be of equal size (or, each partition point is exactly at the center of the partition column). This leads to the following question:
This turns out to be a difficult question to answer, but I could provide further insight to you by deriving the complexity of the other extreme, that is:
For an example of the above case, try searching for –1 in the above sample matrix shown in image (a). Since each subdivision results in the original matrix being halved, the total number of subdivisions can be at most lg n times. Assuming each binary search performed before a subdivision takes c lg n time, the complexity can be expressed as follow:
As you can see, the run time complexity of this extreme case is O(lg n)2, which turns out to be even less than O(n). We conclude that this is not the worst case scenario, as some people might believe.
Please note that the worst case for the Improved Binary Partition method had not been proven here. We had merely proven that one case of the Improved Binary Partition could run in O(n). If you know the proof of the worst case, I would be interested to hear from you.
Next Problem:
2D Matrix(n * n) of positive and negative numbers is given. Matrix is sorted rowwise and columnwise. You have to return the count of -ve numbers in most optimal way.
Searching a 2D Sorted Matrix Part I的更多相关文章
- [LintCode] Kth Smallest Number in Sorted Matrix 有序矩阵中第K小的数字
Find the kth smallest number in at row and column sorted matrix. Have you met this question in a rea ...
- Lintcode: Kth Smallest Number in Sorted Matrix
Find the kth smallest number in at row and column sorted matrix. Example Given k = 4 and a matrix: [ ...
- Lintcode401 Kth Smallest Number in Sorted Matrix solution 题解
[题目描述] Find the kth smallest number in at row and column sorted matrix. 在一个排序矩阵中找从小到大的第 k 个整数. 排序矩阵的 ...
- Kth Smallest Number in Sorted Matrix
Find the kth smallest number in at row and column sorted matrix. Example Given k = 4 and a matrix: [ ...
- sorted matrix - search & find-k-th
sorted matrix ( Young Matrix ) search for a given value in the matrix: 1) starting from upper-right ...
- LeetCode 378. 有序矩阵中第K小的元素(Kth Smallest Element in a Sorted Matrix) 13
378. 有序矩阵中第K小的元素 378. Kth Smallest Element in a Sorted Matrix 题目描述 给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩 ...
- 【LeetCode】378. Kth Smallest Element in a Sorted Matrix 解题报告(Python)
[LeetCode]378. Kth Smallest Element in a Sorted Matrix 解题报告(Python) 标签: LeetCode 题目地址:https://leetco ...
- [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...
- Leetcode:378. Kth Smallest Element in a Sorted Matrix
题目: Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the ...
随机推荐
- 杭电ACM2061--Treasure the new start, freshmen!
http://acm.hdu.edu.cn/showproblem.php?pid=2061 这题很简单.注意换行. <span style="font-size:18px;" ...
- 洛谷 P1428 小鱼比可爱
题目描述 人比人,气死人:鱼比鱼,难死鱼.小鱼最近参加了一个“比可爱”比赛,比的是每只鱼的可爱程度.参赛的鱼被从左到右排成一排,头都朝向左边,然后每只鱼会得到一个整数数值,表示这只鱼的可爱程度,很显然 ...
- 杀死进程 kill -9
cui@bug:~$ killall -h 用法: killall [选项]... [--] 进程名... killall -l, --list killall -V, --version -e,-- ...
- asp.net mvc常用的数据注解和验证以及entity framework数据映射
终于有时间整理一下asp.net mvc 和 entity framework 方面的素材了. 闲话少说,步入正题: 下面是model层的管理员信息表,也是大伙比较常用到的,看看下面的代码大伙应该不会 ...
- WPF中XAML转义字符
字符 转义字符 备注 & (ampersand) & 这个没什么特别的,几乎所有的地方都需要使用转义字符 > (greater-than character) > 在属性( ...
- memcached/redis安全性
最近看到说redis,memcached服务器安全的问题,想想也是,使用这两种服务N年了,由于历史问题吧,工作中基本是以memcached为主,后来才慢慢引入运用redis.由于memcached是没 ...
- 2013-07-24 IT 要闻速记快想
### ========================= ###凡客有闹钟?从凡客的角度来讲,闹钟等工具类应用是为推广品牌和产品服务,通过工具类产品给大众一个对凡客品牌的认知.而选择推出工具类的产品 ...
- wxPython + Boa 练习程序
最近需要做点支持linux的跨平台gui,网上查到了wxPython及Boa,感觉不错,照着Boa文档做做练习. 代码: App: #!/usr/bin/env python #Boa:App:Boa ...
- 一个简单WPF登陆界面,包含记住密码,自动登录等功能,简洁美观
简介:这是一个自己以前用WPF设计的登陆界面,属于一个实验性的界面窗体,如果用于产品还很有不足.但也是有一点学习价值.后台代码略有复杂,但基本上都有注释 分类,略有代码经验的一般都能看懂. 登陆界面外 ...
- android架构介绍
Android其本质就是在标准的Linux系统上增加了Java虚拟机Dalvik,并在Dalvik虚拟机上搭建了一个JAVA的application framework,所有的应用程序都是基于JAVA ...