感觉是noi2014中最有价值的一道题了

我们先考虑链上这个问题怎么做……

如果没限制,那就是SB的斜率优化

我们可以得到这个式子(f[j]-f[k])/(s[j]-s[k])<p[i]

点横坐标是单调的,我们只要维护凸壳然后二分即可

有距离限制?好像不好弄,不过我们记得cash那道坐标不单调的题我们是可以用cdq分治的

这道题也一样,划分,考虑左半部分对右半部分的影响

我们只要对右半部分距离限制排序然后依次加点维护凸壳然后二分即可

换到树上来那就是点分治啦,

我们找重心,先做重心子树外(就是包含根的那部分),做完之后

考虑重心的祖先对子树的影响,我们完全可以如法炮制

然后不断向下递归处理即可

这样noi2014的传统题就做完啦!

 const inf=;
eps=1e-10; type node=record
po,next:longint;
end;
point=record
x,y:int64;
end; var h,fp,p,fa,mx,s,q,b:array[..] of longint;
a:array[..] of point;
cut:array[..] of boolean;
e:array[..] of node;
w,f,d,kp,bp,lim:array[..] of int64;
x,t,i,len,n,ty,r:longint; function max(a,b:longint):longint;
begin
if a>b then exit(a) else exit(b);
end; procedure min(var a:int64; b:int64);
begin
if a>b then a:=b;
end; procedure add(x,y:longint);
begin
inc(len);
e[len].po:=y;
e[len].next:=p[x];
p[x]:=len;
end; procedure bfs(st:longint);
var i,f,x,y:longint;
begin
f:=;
r:=;
q[]:=st;
while f<=r do
begin
x:=q[f];
i:=p[x];
while i<> do
begin
if not cut[i] then
begin
inc(r);
q[r]:=e[i].po;
end;
i:=e[i].next;
end;
inc(f);
end;
end; procedure swap(var a,b:longint);
var c:longint;
begin
c:=a;
a:=b;
b:=c;
end; function cmp(i,j:longint):boolean;
begin
exit(lim[i]-d[i]<lim[j]-d[j]);
end; procedure sort(l,r:longint);
var i,j,x:longint;
begin
i:=l;
j:=r;
x:=b[(l+r) shr ];
repeat
while cmp(b[i],x) do inc(i);
while cmp(x,b[j]) do dec(j);
if i<=j then
begin
swap(b[i],b[j]);
inc(i);
dec(j);
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end; function getk(i,j:longint):extended;
begin
exit((a[i].y-a[j].y)/(a[i].x-a[j].x));
end; function find(l,r,x:longint):longint;
var m:longint;
s1,s2:int64;
begin
while l<r do
begin
m:=(l+r) shr ;
s1:=a[h[m]].y+a[h[m]].x*kp[x];
s2:=a[h[m+]].y+a[h[m+]].x*kp[x];
if s1>s2 then l:=m+
else r:=m;
end;
exit(h[l]);
end; procedure cdq(root:longint);
var i,j,x,mid,m,y:longint;
begin
bfs(root);
if r= then exit;
mid:=;
for i:=r downto do
begin
x:=q[i];
s[x]:=;
mx[x]:=;
j:=p[x];
while j<> do
begin
y:=e[j].po;
if not cut[j] then
begin
s[x]:=s[x]+s[y];
mx[x]:=max(mx[x],s[y]);
end;
j:=e[j].next;
end;
mx[x]:=max(mx[x],r-s[x]);
if mx[x]<mx[mid] then mid:=x;
end;
if root<>mid then
begin
cut[fp[mid]]:=true;
cdq(root);
m:=;
x:=fa[mid];
while x<>root do
begin
inc(m);
a[m].x:=-d[x]; //为了方便改变一下形式
a[m].y:=f[x];
x:=fa[x];
end;
inc(m);
a[m].x:=-d[x];
a[m].y:=f[x]; bfs(mid);
for i:= to r do
b[i]:=q[i];
sort(,r);
t:=;
j:=;
for i:= to r do
begin
x:=b[i];
while (j<=m) and (a[j].x<=lim[x]-d[x]) do
begin
while (t>) and (getk(j,h[t])-eps<getk(h[t],h[t-])) do dec(t);
inc(t);
h[t]:=j;
inc(j);
end;
if t> then
begin
y:=find(,t,x);
min(f[x],a[y].y+kp[x]*(d[x]+a[y].x)+bp[x]);
end;
end;
end;
for i:= to r do
begin
x:=q[i];
if d[x]-d[mid]<=lim[x] then
min(f[x],f[mid]+kp[x]*(d[x]-d[mid])+bp[x]);
end;
i:=p[mid];
while i<> do
begin
if not cut[i] then cdq(e[i].po);
i:=e[i].next;
end;
end; begin
readln(n,ty);
for i:= to n do
begin
readln(fa[i],w[i],kp[i],bp[i],lim[i]);
add(fa[i],i);
fp[i]:=len;
f[i]:=inf;
end;
bfs();
for i:= to r do
begin
x:=q[i];
d[x]:=d[fa[x]]+w[x];
end;
mx[]:=n+;
f[]:=;
cdq();
for i:= to n do
writeln(f[i]);
end.

bzoj3672的更多相关文章

  1. [BZOJ3672][UOJ#7][NOI2014]购票

    [BZOJ3672][UOJ#7][NOI2014]购票 试题描述  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.       ...

  2. BZOJ3672 [Noi2014]购票 【点分治 + 斜率优化】

    题目链接 BZOJ3672 题解 如果暂时不管\(l[i]\)的限制,并假使这是一条链 设\(f[i]\)表示\(i\)节点的最优答案,我们容易得到\(dp\)方程 \[f[i] = min\{f[j ...

  3. bzoj3672【NOI2014】购票

    题目描述   今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国的城市构成了一棵以SZ市为根的有根树,每个城市与 ...

  4. 【BZOJ3672】【NOI2014】购票(线段树,斜率优化,动态规划)

    [BZOJ3672][NOI2014]购票(线段树,斜率优化,动态规划) 题解 首先考虑\(dp\)的方程,设\(f[i]\)表示\(i\)的最优值 很明显的转移\(f[i]=min(f[j]+(de ...

  5. 【bzoj3672】购票

    Portal -->bzoj3672 Solution 天知道我是怎么调完的qwq调到天昏地暗系列.. ​ 不管这么多,先尝试列一个最简单的状态转移方程 用\(f[i]\)表示\(i\)点到\( ...

  6. 【BZOJ3672】[Noi2014]购票 树分治+斜率优化

    [BZOJ3672][Noi2014]购票 Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.       ...

  7. BZOJ3672 : [Noi2014]购票

    设d[i]表示i到1的距离 f[i]=w[i]+min(f[j]+(d[i]-d[j])*v[i])=w[i]+d[i]*v[i]+min(-d[j]*v[i]+f[j]) 对这棵树进行点分治,每次递 ...

  8. bzoj千题计划251:bzoj3672: [Noi2014]购票

    http://www.lydsy.com/JudgeOnline/problem.php?id=3672 法一:线段树维护可持久化单调队列维护凸包 斜率优化DP 设dp[i] 表示i号点到根节点的最少 ...

  9. bzoj3672/luogu2305 购票 (运用点分治思想的树上cdq分治+斜率优化dp)

    我们都做过一道题(?)货币兑换,是用cdq分治来解决不单调的斜率优化 现在它放到了树上.. 总之先写下来dp方程,$f[i]=min\{f[j]+(dis[i]-dis[j])*p[i]+q[i]\} ...

随机推荐

  1. QQ炫舞官网选项卡效果

    这篇博文里需要注意的是当点击事件发生的时候,需要用循环,重置标题的classname和标题底部都设置成隐藏,当点击的时候在加上标题的active属性和显示属性 代码地址:https://github. ...

  2. mysql安装篇

    装了vps,环境又要自己配置.mysql比较难装上. 1.安装MySQL 5.5.x的yum源:rpm -Uvh http://repo.webtatic.com/yum/centos/5/lates ...

  3. SVN--下载、安装VisualSVN server 服务端和 TortoiseSVN客户端

    前言: 在http://www.cnblogs.com/xiaobaihome/archive/2012/03/20/2407610.html的博客中已经很详细地介绍了SVN的服务器--VisualS ...

  4. 【BZOJ】【2693】JZPTAB

    莫比乌斯反演 PoPoQQQ讲义第5题,是BZOJ 2154的升级版(多次询问) 题解:http://blog.csdn.net/popoqqq/article/details/42078725 WA ...

  5. oracle——外连接查询

    一.问题描述 有时我们为了保留某个表中的数据,而该表中的数据在另外一个关联表中未必都存在对应,此时就应该试用外连接查询. 比如:两个表,产品表和子产品表 注:子产品的parent_product_id ...

  6. LoadAssetAtPath 与 Load 的区别

    一.官方的文档 Resources.LoadAssetAtPath Returns a resource at an asset path (Editor Only). This function a ...

  7. 消除SDK更新时的“https://dl-ssl.google.com refused”异常

    原地址:http://blog.csdn.net/x605940745/article/details/17911115 消除SDK更新时的“https://dl-ssl.google.com ref ...

  8. 数据库批量插入数据的shell脚本

    测试用,先来一个简单的,这个是国产神通数据库的,用isql命令: !/bin/bash == "-h" ] then echo "USAGE: $0 table_name ...

  9. First Lua function running in C

    这是我在C里面跑出来的第一个Lua 文件, 纪念一下. 1.Set up envirnonment: Mac下面 Lua的src (即include) 和lib(binary)是分开的, 所以需要分别 ...

  10. javascript表格的添加和删除

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...