The 3n + 1 problem

Problem Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

Consider the following algorithm:

1.      input n

2.      print n

3.      if n = 1 then STOP

4.           if n is odd then n <- 3n + 1

5.           else n <- n / 2

6.      GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j. 

 
Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

You can assume that no opperation overflows a 32-bit integer.

 
Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line). 

 
Sample Input
1 10
100 200
201 210
900 1000
 
Sample Output
1 10 20
100 200 125
201 210 89
900 1000 174
 
Source
UVA
 
Recommend
mcqsmall
 
       
 问题直接用暴力法就可以解出来,唯一要注意的一点就是i不一定小于j。
      代码如下:
#include <iostream>
#include <cstdio>
using namespace std; int inline countTimes(int n)
{
int times = 1;
do
{
if(n & 0x1 == 1)
{
n = 3 * n + 1;
}
else
{
n = n >> 1;
}
++times;
}while(n != 1);
return times;
}
int main()
{
int i, j;
while (scanf ("%d%d", &i, &j) != EOF)
{
int bi1, bi2, bi3;
if (i > j)
{
bi1 = j;
bi2 = i;
}
else
{
bi1 = i;
bi2 = j;
}
int maxTimes;
maxTimes = countTimes (i);
for (int k = bi1 + 1; k <= bi2; k++)
{
bi3 = countTimes(k);
if (bi3 > maxTimes)
maxTimes = bi3;
}
cout << i << ' ' << j << ' ' << maxTimes << endl; }
system ("pause");
return 0; }

杭电OJ——1032 The 3n + 1 problem的更多相关文章

  1. 题解报告:hdu 1032 The 3n + 1 problem(克拉兹问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1032 Problem Description Problems in Computer Science ...

  2. 『ACM C++』HDU杭电OJ | 1415 - Jugs (灌水定理引申)

    今天总算开学了,当了班长就是麻烦,明明自己没买书却要带着一波人去领书,那能怎么办呢,只能说我善人心肠哈哈哈,不过我脑子里突然浮起一个念头,大二还要不要继续当这个班委呢,既然已经体验过就可以适当放下了吧 ...

  3. C#利用POST实现杭电oj的AC自动机器人,AC率高达50%~~

    暑假集训虽然很快乐,偶尔也会比较枯燥,,这个时候就需要自娱自乐... 然后看hdu的排行榜发现,除了一些是虚拟测评机的账号以外,有几个都是AC自动机器人 然后发现有一位作者是用网页填表然后按钮模拟,, ...

  4. 杭电oj 2095 & 异或^符号在C/C++中的使用

    异或^符号,在平时的学习时可能遇到的不多,不过有时使用得当可以发挥意想不到的结果. 值得注意的是,异或运算是建立在二进制基础上的,所有运算过程都是按位异或(即相同为0,不同为1,也称模二加),得到最终 ...

  5. 用python爬取杭电oj的数据

    暑假集训主要是在杭电oj上面刷题,白天与算法作斗争,晚上望干点自己喜欢的事情! 首先,确定要爬取哪些数据: 如上图所示,题目ID,名称,accepted,submissions,都很有用. 查看源代码 ...

  6. 杭电oj 4004---The Frog Games java解法

    import java.util.Arrays; import java.util.Scanner; //杭电oj 4004 //解题思路:利用二分法查找,即先选取跳跃距离的区间,从最大到最小, // ...

  7. 杭电oj————2057(java)

    question:A+ B again 思路:额,没啥思路/捂脸,用java的long包里的方法,很简单,只是有几次WA,有几点要注意一下 注意:如果数字有加号要删除掉,这里用到了正则表达式“\\+” ...

  8. 爬取杭电oj所有题目

    杭电oj并没有反爬 所以直接爬就好了 直接贴源码(参数可改,循环次数可改,存储路径可改) import requests from bs4 import BeautifulSoup import ti ...

  9. 杭电OJ——1198 Farm Irrigation (并查集)

    畅通工程 Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府"畅通工程"的目标是使全省任何两个城镇间都可 ...

随机推荐

  1. markdown 测试代码

    这是 H1 这是 H2 这是 H3 这是 H4 这是 H5 这是 H6 A First Level Header A Second Level Header Now is the time for a ...

  2. js:防抖动与节流【转载】

    源文:https://blog.csdn.net/crystal6918/article/details/62236730#reply <!DOCTYPE html> <html l ...

  3. spring boot 笔记

    1.不能访问非启动类中的@RequestMapping 路径: 启动类注解 1.@Controller @EnableAutoConfiguration @ComponentScan 或 2.@Spr ...

  4. Django学习笔记-2018.12.08

    在Python的正则表达式中,有一个参数为re.S.它表示“.”(不包含外侧双引号,下同)的作用扩展到整个字符串,包括“\n”.看如下代码: import re a = '''asdfhellopas ...

  5. Python学习之pillow库入门

    http://python.jobbole.com/84956/ 我还是搬运工......

  6. Blob和Clob在JDBC中的简介

    数据库在当今的应用越来越广泛了,同样伴随着领域的广泛,存储的内容也不在是只有数值.字符.boolean几种类型,而是越来越多样化.在这样的前提下就出现了Blob和Clob两个类型.下面我将对这个两个类 ...

  7. 实验 Unity Linear Color Space 发现结果不符合预期

    美术前上个礼拜找我问光照图总是烘焙过暗的问题,一时兴起我在 Gamma 和 Linear 两个颜色空间切换了下,发现一个 Shader 明暗不同,另一个 毫无变化,于是激发了我去研究下在 Unity ...

  8. Java反射机制Reflection

    Java反射机制 1 .class文件 2 Class类 3 Class类与反射机制 4 Java反射机制的类库支持及简介 5 反射机制的定义与应用 6 反射机制Demo Java反射机制demo(一 ...

  9. AM335x内核模块驱动之LED

    在Ubuntu的任意可操作的文件才建立text目录 在text中建立zyr-hello.c: #include<linux/kernel.h> #include<linux/modu ...

  10. shell top解析

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器. top显示系统当前的进程和其他状况,是一个动态显示过程,即可以通过用户按键来不 ...