【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
【题意】给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值。n<=100,wi<=10^9。
【算法】期望+高斯消元
【题解】首先异或不满足期望的线性,所以考虑拆位。
对于每一个二进制位,经过边权为0仍是x,经过边权为1变成1-x(转化成减法才满足期望的线性)。
设f[x]表示点x到n的路径xor期望,f[n]=0,根据全期望公式:
$$f[i]=\sum_{j}\frac{f[j]}{out[i]}\ \ , \ \ w(i,j)=0$$
$$f[i]=\sum_{j}\frac{1-f[j]}{out[i]}\ \ , \ \ w(i,j)=1$$
因为有循环所以用高斯消元求解,复杂度O(n^3*log wi)。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=;
struct edge{int v,w,from;}e[maxn*maxn*];
int n,m,first[maxn],tot,out[maxn];
long double a[maxn][maxn],ans;
void insert(int u,int v,int w){tot++;e[tot].v=v;e[tot].w=w;e[tot].from=first[u];first[u]=tot;out[u]++;}
void gauss(){
for(int i=;i<n;i++){
int r=i;
for(int j=i+;j<=n;j++)if(fabs(a[j][i])>fabs(a[r][i]))r=j;
if(r!=i)for(int j=i;j<=n+;j++)swap(a[i][j],a[r][j]);
for(int j=i+;j<=n;j++)
for(int k=n+;k>=i;k--)
a[j][k]-=a[j][i]/a[i][i]*a[i][k];
}
for(int i=n;i>=;i--){
for(int j=i+;j<=n;j++)a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
insert(u,v,w);
if(u!=v)insert(v,u,w);//
}
for(int k=;k<=;k++){
memset(a,,sizeof(a));//
for(int x=;x<n;x++){
for(int i=first[x];i;i=e[i].from){
if(e[i].w&(<<k)){
a[x][e[i].v]--;//
a[x][n+]--;
}
else a[x][e[i].v]++;
}
a[x][x]-=out[x];//
}
a[n][n]=;
gauss();
ans+=a[][n+]*(<<k);
}
printf("%.3Lf",ans);
return ;
}
注意:
1.方程组右边是常数项。
2.自环不要重复加边。
【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元的更多相关文章
- bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】
首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP
首先可以各位分开求和 定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移. 然后高斯消元31次就可以了. #inc ...
- [BZOJ2337][HNOI2011]XOR和路径(概率+高斯消元)
直接不容易算,考虑拆成位处理. 设f[i]表示i到n的期望路径异或和(仅考虑某一位),则$f[y]=\sum\limits_{exist\ x1\to y=0}\frac{f[x1]}{d[x1]}+ ...
- 【BZOJ2337】Xor和路径(高斯消元)
[BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...
随机推荐
- Dijkstra+优先队列 模板
#include<bits/stdc++.h> using namespace std; #define ll long long ; const ll inf=1e17; struct ...
- MySQL的并发访问控制(锁)
前言:任何的数据集只要支持并发访问模型就必须基于锁机制进行访问控制 锁种类 读锁:共享锁,允许给其他人读,不允许他人写写锁:独占锁, 不允许其他人读和写 锁类型 显示锁:用户手动请求读锁或写锁隐式锁: ...
- 201621123037《Java程序设计》第二周学习总结
#Week02-Java基本语法与类库 1. 本周学习总结 关键词:常量池.对象.null.不可变性.string对象拼接.字符串池 关键概念之间的联系:Java中有常量池,超出常量池以外的就会新开辟 ...
- php判断是否https
function is_https() { if ( !empty($_SERVER['HTTPS']) && strtolower($_SERVER['HTTPS']) !== 'o ...
- 【操作系统、UNIX环境编程】进程间通信
多个进程可以共享系统中的各种资源,但其中许多资源一次只能为一个进程使用,我们把一次仅允许一个进程使用的资源称为临界资源,许多物理设备都属于临界资源,如打印机等. Linux下进程间通信有如下几种方式: ...
- 第199天:js---扩充内置对象功能总结
一.数组 1.删除数组中指定索引的数据 /** 删除数组中指定索引的数据 **/ Array.prototype.deleteAt = function (index) { if (index < ...
- SWERC2015-I Text Processor
题意 给一个长度为\(n\)的字符串\(s\),再给定一个\(w\),问对于所有的\(i\in [1,n-w+1]\),\(s[i..i+w-1]\)有多少个不同字串.\(n,w\le 10^5\). ...
- click()、bind()、live()和delegate()方法
我之前使用click()比较多,又来因为网页内容需要前端生成用了live().有的时候使用click()和bind()分不清楚该怎么试用.查了很多资料.测试了很多次,自己明白了. 总结如下:代码注释很 ...
- 【Java】关于@RequestBody
首先@RequestBody需要接的参数是一个string化的json,这里直接使用JSON.stringify(json)这个方法来转化 其次@RequestBody,从名称上来看也就是说要读取的数 ...
- 创建Qt项目
创建Qt项目 1 创建Qt项目 2.1 使用向导创建 打开Qt Creator 界面选择 New Project或者选择菜单栏 [文件]-[新建文件或项目]菜单项 弹出New Project对 ...