hdu 3949 XOR 线性基 第k小异或和
题目链接
题意
给定\(n\)个数,对其每一个子集计算异或和,求第\(k\)小的异或和。
思路
先求得线性基。
同上题,转化为求其线性基的子集的第k小异或和。
结论
记\(n\)个数的线性基为向量组\(B=\{b_0,b_1,b_2,...,b_t\}(有b_i[p_i]=1,p_1\lt p_2\lt ...\lt p_t)\),记\(k\)的二进制表示为向量\(\vec{K}\).
则第\(k\)小异或和为$$\oplus_{\vec{K}[i]=1}b_i$$
即\(k\)的二进制表示中为\(1\)的那些位所对应的线性基中的向量异或起来的值。
正确性证明
对于任意的\(1\leq i\lt j\leq tot(tot\)为子集的总个数,也即异或和的总个数)
记\(i\)的二进制表示为\(\vec{I}\),\(j\)的二进制表示为\(\vec{J}\),设从高到低的\(\vec{I}\)与\(\vec{J}\)第一个不同的位为第\(pos\)位,因为\(i\lt j\),故有\(\vec{I}[pos]=0, \vec{J}[pos]=1\).
记第\(i\)小异或值为\(ii\),第\(j\)小异或值为\(jj\),对应的向量分别为\(\vec{II}, \vec{JJ}\). 根据上述构造第\(k\)小值的方法,构造\(\vec{II}\)时没有异或\(b_{pos}\),而构造\(\vec{JJ}\)时异或了\(b_{pos}\). 又由线性基的性质,只有\(b_{pos}[p_{pos}]=1\),故有\(\vec{II}[p_{pos}]=0, \vec{JJ}[p_{pos}]=1\).
即\(\vec{II}\)与\(\vec{JJ}\)高位都相同,第\(p_{pos}\)位\(\vec{JJ}\)大,故\(\vec{II}\lt \vec{JJ}\),即\(ii\lt jj\).
所以\(i\lt j\rightarrow ii\lt jj\),所以\(rank(i)=rank(ii)\),得到了一一对应的关系,故构造的正确性得证。
注意点
如果原\(n\)个数表示成的\(01\)串线性相关,那么除了可以用线性基线性组合而得的\(2^r-1\)个数外,另有最小的异或和为\(0\).
Code
#include <bits/stdc++.h>
#define maxl 60
#define LL long long
using namespace std;
struct LinearBasis {
LL a[maxl+1]; bool rel; int sz;
vector<LL> v;
LinearBasis() { memset(a, 0, sizeof a); rel = false; sz = 0; v.clear();}
void insert(LL t) {
for (int i = maxl; i >= 0; --i) {
if (!(t >> i & 1)) continue;
if (a[i]) t ^= a[i];
else {
for (int j = 0; j < i; ++j) if (t >> j & 1) t ^= a[j];
for (int j = i+1; j <= maxl; ++j) if (a[j] >> i & 1) a[j] ^= t;
a[i] = t, ++sz;
return;
}
}
rel = true;
}
void basis() {
for (int i = 0; i <= maxl; ++i) if (a[i]) v.push_back(a[i]);
}
LL kth(LL x) {
LL ret = 0;
for (int i = 0; i < v.size(); ++i) if (x >> i & 1) ret ^= v[i];
return ret;
}
};
int kas;
void work() {
int n, q; LL x;
scanf("%d", &n);
LinearBasis lb;
for (int i = 0; i < n; ++i) {
scanf("%lld", &x);
lb.insert(x);
}
lb.basis();
scanf("%d", &q);
printf("Case #%d:\n", ++kas);
LL tot = (1LL << lb.sz) - 1;
for (int i = 0; i < q; ++i) {
scanf("%lld", &x);
if (lb.rel) --x;
if (x > tot) puts("-1");
else printf("%lld\n", lb.kth(x));
}
}
int main() {
int T;
scanf("%d", &T);
while (T--) work();
return 0;
}
hdu 3949 XOR 线性基 第k小异或和的更多相关文章
- hdu 3949 XOR (线性基)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...
- HDU 3949 XOR [线性基|高斯消元]
目录 题目链接 题解 代码 题目链接 HDU 3949 XOR 题解 hdu3949XOR 搞死消元找到一组线性无关组 消出对角矩阵后 对于k二进制拆分 对于每列只有有一个1的,显然可以用k的二进制数 ...
- HDU 3949 XOR 线性基
http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...
- HDU3949 XOR(线性基第k小)
Problem Description XOR is a kind of bit operator, we define that as follow: for two binary base num ...
- HDU 3949 XOR (线性基第k小)题解
题意: 给出\(n\)个数,求出子集异或第\(k\)小的值,不存在输出-1. 思路: 先用线性基存所有的子集,然后对线性基每一位进行消元,保证只有\(d[i]\)的\(i\)位存在1,那么这样变成了一 ...
- HDU 3949 XOR ——线形基 高斯消元
[题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...
- HDU3949 XOR (线性基)
HDU3949 XOR Problem Description XOR is a kind of bit operator, we define that as follow: for two bin ...
- HDU 3949 XOR(高斯消元搞基)
HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...
- HDU 3949 XOR [高斯消元XOR 线性基]
3949冰上走 题意: 给你 N个数,从中取出若干个进行异或运算 , 求最后所有可以得到的异或结果中的第k小值 N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选 ...
随机推荐
- SDUT 3918
Description 这一天希酱又补了一卦,没想到每个人都发到了一张印有整数的牌,现在希酱想要继续占卜的话需要知道每个人手里拿的牌的整数具体是多少,但是她们却打起了哑谜. 穗乃果:我拿到的是 2 ...
- Django之ModelForm(一)
要说ModelForm,那就先说Form吧! 先给出一个Form示例: models.py from django.db import models class UserType(models.Mod ...
- CMDB概述(一)
浅谈ITIL TIL即IT基础架构库(Information Technology Infrastructure Library, ITIL,信息技术基础架构库)由英国政府部门CCTA(Central ...
- 重载jquery on方法实现click事件在移动端的快速响应
额,这个标题取的还真是挺装的... 其实我想表达的是jquery click事件如何在移动端自动转换成touchstart事件. 因为移动端click事件会比touchstart事件慢几拍 移动设备某 ...
- 安装JDK环境变量的配置
设置环境变量 在java中需要设置三个环境变量(1.5之后不用再设置classpath了,但是个人强烈建议继续设置以保证向下兼容问题) JDK安装完成之后我们用来设置环境变量:右击”我的电脑“,选择” ...
- 【swupdate文档 五】从可信的来源更新镜像
从可信的来源更新镜像 现在越来越重要的是,设备不仅要能安全地进行更新操作, 而且要能够验证发送的图像是否来自一个已知的源, 并且没有嵌入恶意软件. 为了实现这个目标,SWUpdate必须验证传入的镜像 ...
- 013 GC机制
本文转自:https://www.cnblogs.com/shudonghe/p/3457990.html 最近还是在找工作,在面试某移动互联网公司之前认为自己对Java的GC机制已经相当了解,其他面 ...
- Idea安装Scala插件(转)
原文链接:http://blog.csdn.net/a2011480169/article/details/52712421 参考博客: 1.http://wwwlouxuemingcom.blog. ...
- IndexWriterConfig的各个配置项说明(转)
1.Analyzer:分析器 2.matchVersion:所用Lucene的版本 3.ramBufferSizeMB:随机内存 默认为16M. 用于控制buffer索引文档的内存上限,如果buffe ...
- shell之read命令
一.概述 read命令接收标准输入(键盘)的输入,或者其他文件描述符的输入.得到输入后,read命令将数据放入一个标准变量中. 二.使用举例(这里仅列出一些常用的选项) 1.基本读取 #!/bin/b ...