题意

    上下有两个位置分别对应的序列A、B,长度为n,两序列为n的一个排列。当Ai == Bj时,上下会连一条边。你可以选择序列A或者序列B进行旋转任意K步,如 3 4 1 5 2 旋转两步为 5 2 3 4 1。求旋转后最小的相交的线段的对数。

  很暴力的就做了这一题,当选择A进行旋转时,A序列翻倍,然后建一棵主席树,记录点Bi的度数,为了更新用(其实可以O(1)更新),然后长度为n的区间扫一遍。

  B亦同。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream> using namespace std; typedef long long LL;
const int maxn = *;
int n, a[maxn], b[maxn], to[maxn];
struct Tree
{
int sum[maxn*], ls[maxn*], rs[maxn*], cnt;
Tree()
{
cnt = ;
}
void pushup(int rt)
{
sum[rt] = sum[ls[rt]]+sum[rs[rt]];
}
void update(int las_rt, int rt, int l, int r, int p, int d)
{
if (l == r)
{
sum[rt] = sum[las_rt]+d;
return ;
}
int mid = (l+r)>>;
if (p <= mid)
{
ls[rt] = ++cnt, rs[rt] = rs[las_rt];
update(ls[las_rt], ls[rt], l, mid, p, d);
}
else
{
ls[rt] = ls[las_rt], rs[rt] = ++cnt;
update(rs[las_rt], rs[rt], mid+, r, p, d);
}
pushup(rt);
}
int query(int rt_1, int rt_2, int l, int r, int L, int R)
{
if (L <= l && r <= R)
return sum[rt_2]-sum[rt_1];
int mid = (l+r)>>, ret = ;
if (L <= mid)
ret += query(ls[rt_1], ls[rt_2], l, mid, L, R);
if (R > mid)
ret += query(rs[rt_1], rs[rt_2], mid+, r, L, R);
return ret;
}
}T1, T2;
int root1[maxn], root2[maxn]; int main()
{
freopen("mincross.in", "r", stdin);
freopen("mincross.out", "w", stdout);
scanf("%d", &n);
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]), a[n+i] = a[i];
for (int i = ; i <= n; ++i)
scanf("%d", &b[i]), b[n+i] = b[i];
//part 1
for (int i = ; i <= n; ++i)
to[b[i]] = i;
root1[] = ++T1.cnt;
T1.update(, root1[], , n, to[a[]], );
for (int i = ; i <= *n; ++i)
{
root1[i] = ++T1.cnt;
T1.update(root1[i-], root1[i], , n, to[a[i]], );
}
LL now_sum = , ans;
for (int i = ; i <= n; ++i)
if (to[a[i]]+ <= n)
now_sum += T1.query(, root1[i], , n, to[a[i]]+, n);
ans = now_sum;
for (int i = n+; i <= *n; ++i)
{
int temp = ;
if (to[a[i]]- >= )
temp = T1.query(root1[i-n], root1[i-], , n, , to[a[i]]-);
now_sum -= temp, now_sum += (n-temp-);
ans = min(ans, now_sum);
}
//part 2
for (int i = ; i <= n; ++i)
to[a[i]] = i;
root2[] = ++T2.cnt;
T2.update(, root2[], , n, to[b[]], );
for (int i = ; i <= *n; ++i)
{
root2[i] = ++T2.cnt;
T2.update(root2[i-], root2[i], , n, to[b[i]], );
}
now_sum = ;
for (int i = ; i <= n; ++i)
if (to[b[i]]+ <= n)
now_sum += T2.query(, root2[i], , n, to[b[i]]+, n);
for (int i = n+; i <= *n; ++i)
{
int temp = ;
if (to[b[i]]- >= )
temp = T2.query(root2[i-n], root2[i-], , n, , to[b[i]]-);
now_sum -= temp, now_sum += (n-temp-);
ans = min(ans, now_sum);
}
cout <<ans <<endl;
return ;
}

USACO 2017 FEB Platinum mincross 可持久化线段树的更多相关文章

  1. USACO 2017 FEB Platinum nocross DP

    题目大意 上下有两个长度为n.位置对应的序列A.B,其中数的范围均为1~n.若abs(A[i]-B[j]) <= 4,则A[i]与B[j]间可以连一条边.现要求在边与边不相交的情况下的最大的连边 ...

  2. LOJ.6073.[2017山东一轮集训Day5]距离(可持久化线段树 树链剖分)

    题目链接 就是恶心人的,简单写写了...(似乎就是[HNOI2015]开店?) 拆式子,记\(dis_i\)为\(i\)到根节点的路径权值和,\(Ans=\sum dis_{p_i}+\sum dis ...

  3. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  4. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  5. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

  6. HDU 4866 Shooting(持久化线段树)

    view code//第二道持久化线段树,照着别人的代码慢慢敲,还是有点不理解 #include <iostream> #include <cstdio> #include & ...

  7. 【BZOJ-3653】谈笑风生 DFS序 + 可持久化线段树

    3653: 谈笑风生 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 628  Solved: 245[Submit][Status][Discuss] ...

  8. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

  9. 【BZOJ3207】花神的嘲讽计划I 可持久化线段树/莫队

    看到题目就可以想到hash 然后很自然的联想到可持久化权值线段树 WA:base取了偶数 这道题还可以用莫队做,比线段树快一些 可持久化线段树: #include<bits/stdc++.h&g ...

随机推荐

  1. php查询mysql返回大量数据结果集导致内存溢出的解决方法

    web开发中如果遇到php查询mysql返回大量数据导致内存溢出.或者内存不够用的情况那就需要看下MySQL C API的关联,那么究竟是什么导致php查询mysql返回大量数据时内存不够用情况? 答 ...

  2. GSON转换日期数据为特定的JSON数据

    通过JSON传递数据的时候经常需要传递日期,Java中可以通过GSON将日期转换为特定格式的JSON数据. 1.普通的GSON转换日期 public void query(HttpServletReq ...

  3. (1)剑指Offer之斐波那契数列问题和跳台阶问题

    一 斐波那契数列 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 问题分析: 可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有 ...

  4. 高通msm mdm 总结

    1. svn 获取工程代码命令:svn co svn+ssh://10.20.30.18/svn-repos/msm8916/branches/LA1.1-CS-r113502.2 2. 如何确定那些 ...

  5. BZOJ 2049: [Sdoi2008]Cave 洞穴勘测——LCT

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2049 省选之前来切一道数据结构模板题. 题意 这是一道模板题. N个点,M次操作,每次加边/ ...

  6. linux动态库编译和使用详细剖析 - 后续

    引言 - 也许是修行 很久以前写过关于动态库科普文章, 废话反正是说了好多. 核心就是在 linux 上面玩了一下 dlopen : ) linux动态库编译和使用详细剖析 - https://www ...

  7. Python 类的名称空间和组合

    一.Python类的名称空间 class Student(object): School = '北京大学' def __init__(self): pass stu1 = Student() stu1 ...

  8. Python——文件打开模式辨析

    版权声明:本文系原创,转载请注明出处及链接. Python中,open()函数打开文件时打开模式如r.r+ .w+.w.a.a+有何不同 r 只能读 r+ 可读可写,不会创建不存在的文件.如果直接写文 ...

  9. caffe多个gpu数据合并到一起

    当多GPU树形拓扑构建完毕,数据预缓冲到GPU显存,开始进入多GPU并行训练.Caffe的Solver提供了两个用于多GPU训练的回调函数:on_start()和on_gradient_ready() ...

  10. cocos2d-x v2.2 IOS工程支持64-bit 遇坑记录

    修改缘由 由于 iPhone 5S的A7 CPU   iPhone 6(A8 CPU)都已经支持64-bit ARM 架构,据说64位处理器跑64代码会提高处理能力?因此二月一新提交appstore应 ...