和斐波那契一个道理在最后加一个求和即可
 #include<cstdio>
#include<cstring>
#include<iostream>
//using namespace std;
const int maxn=;
const double eps=1e-;
long long modn;
long long n,l,r;
long long b[]={};
struct mat{
long long e[][];
mat(){ memset(e,,sizeof(e)); }
};
mat a;
mat Mul(mat x,mat y){
mat z;
for(int i=;i<=n+;i++){
for(int j=;j<=n+;j++){
for(int k=;k<=n+;k++){
z.e[i][j]+=x.e[i][k]*y.e[k][j];
z.e[i][j]%=modn;
}
}
}
return z;
}
mat Pow(mat x,long long k){
mat z;
for(int i=;i<=n+;i++){
z.e[i][i]=;
}
while(k>){
if(k&){
z=Mul(z,x);
}
x=Mul(x,x);
k/=;
}/*for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
std::cout<<z.e[i][j]<<' ';
}
std::cout<<std::endl;
}*/
return z;
}
long long doit(long long x){
if(x<n){
return b[x+];
}
mat z=Pow(a,x-n+);
long long ans=,s=,d=;
for(int i=;i<=n+;i++){
d+=z.e[n][i]*b[i];
s+=z.e[n+][i]*b[i];
d%=modn;s%=modn;
}
ans=(s+d)%modn;
ans%=modn;
return ans;
}
int main(){
scanf("%lld",&n);
n+=;
for(int i=;i<=n;i++){
scanf("%lld",&b[i]);
b[n+]+=b[i];
}
b[n+]-=b[n];
for(int i=n;i>;i--){
scanf("%lld",&a.e[n][i]);
}
long long l,r;
scanf("%lld%lld%lld",&l,&r,&modn);
for(int i=;i<=n;i++){
b[i]%=modn;
a.e[i-][i]=;a.e[n][i]%=modn;
}
a.e[n+][n+]=,a.e[n+][n]=;
/*for(int i=1;i<=n+1;i++){
for(int j=1;j<=n+1;j++){
std::cout<<a.e[i][j]<<' ';
}
std::cout<<std::endl;
}*/
long long ans=(doit(r)-doit(l-)+modn)%modn;
printf("%lld\n",ans);
return ;
}

BZOJ 3231: [Sdoi2008]递归数列 (JZYZOJ 1353) 矩阵快速幂的更多相关文章

  1. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  2. bzoj 3231 [Sdoi2008]递归数列——矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...

  3. bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】

    今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...

  4. nyoj_148_fibonacci数列(二)_矩阵快速幂

    fibonacci数列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 In the Fibonacci integer sequence, F0 = 0, F ...

  5. fibonacci数列(二)_矩阵快速幂

    描述 In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For exampl ...

  6. POJ3070 斐波那契数列递推 矩阵快速幂模板题

    题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...

  7. bzoj5118 Fib数列2 二次剩余+矩阵快速幂

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5118 题解 这个题一看就是不可做的样子. 求斐波那契数列的第 \(n\) 项,\(n \leq ...

  8. Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)

    题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3);  求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...

  9. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

随机推荐

  1. 22、WebDriver

    什么是WebDriver?1.Webdriver(Selenium2)是一种用于Web应用程序的自动测试工具:2.它提供了一套友好的API:3.Webdriver完全就是一套类库,不依赖任何测试框架, ...

  2. Django之jsonp跨域请求原理

    在进行网站开发的过程中经常会用到第三方的数据,但是由于同源策略的限制导致ajax不能发送请求,因此也无法获得数据.解决ajax的跨域问题有两种方法: 一.jsonp 二.XMLHttpRequest2 ...

  3. python设计模式之迭代器与生成器详解(五)

    前言 迭代器是设计模式中的一种行为模式,它提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示.python提倡使用生成器,生成器也是迭代器的一种. 系列文章 python设计模 ...

  4. 72.xilinx vivado zynq vdma仿真及应用详解(一)

    很多人用zynq平台做视频图像开发,但是对vdma了解比较少,上手起来稍微有些困难,我针对这一现象,做了一个基于vivado和modelsim的仿真和应用测试工程,并写篇文章做些介绍,希望能对大家有帮 ...

  5. B2旅游签证记

    先去https://ceac.state.gov/ceac/,选择DS-160表格,在线申请登记个人信息 ,选择大事馆“CHINA BEIJING”和验证码,点 Start an Applicatio ...

  6. redis aof文件过大问题

    http://www.itnose.net/detail/6682725.html 最近新安装了一台redis,版本为redis-3.2.5 数据盘用的是固态硬盘. 之前用的是普通硬盘,redis日志 ...

  7. php cache类代码(php数据缓存类)

    如果访问量大的话会给数据库造成很大的负担,所以对于变化不经常的内容要做好php 数据cache(缓存)是十分必要的,我做了一个简单的php“文件缓存”的类,希望对大家有所帮助. 思路是这样的: 对于一 ...

  8. Linux/Unix 怎样找出并删除某一时间点的文件

    Linux/Unix 怎样找出并删除某一时间点的文件 在Linux/Unix系统中,我们的应用每天会产生日志文件,每天也会备份应用程序和数据库,日志文件和备份文件长时间积累会占用大量的存储空间,而有些 ...

  9. Bootstrap的使用。。。

    概览 深入了解 Bootstrap 底层结构的关键部分,包括我们让 web 开发变得更好.更快.更强壮的最佳实践. HTML5 文档类型 Bootstrap 使用到的某些 HTML 元素和 CSS 属 ...

  10. C++实践积累

    C++ STL vector 如何彻底清空一个vector? 实践证明,vector.clear()并不能把vector容量清空,只会让vector.size()变为零,依然很占内存.那如何让vect ...