Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:

1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);

2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。

每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3

4 1 3 4 0 2 3

Sample Output

108

HINT

【样例说明】

在样例中,小H可以通过如下3轮操作得到108分:

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+ 3)=36分。

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)= 20分。

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。

【数据规模与评分】

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

思路

发现其实划分的顺序并不重要

最后的贡献就是所有块两两和的乘积的和

所以可以直接从前到后进行划分

划分\(k+1\)次,每次划分一个前缀

然后就可以发现有一个很显然的转移

\(dp_{i,k} = max(dp_{j,k-1} + sum_{j}*(sum_{i}-sum_{j}))\)

拆开之后就变成

\(dp_{i,k} = max(dp_{j,k-1} - sum_{j}^2 + sum_{i}*sum_{j})\)

就变成挺显然的斜率式子了

把转移用平面上的点表示,维护上凸壳

然后直接用向量的求法就可以了


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define for_up(a, b, c) for (int a = b; a <= c; ++a)
#define for_down(a, b, c) for (int a = b; a >= c; --a)
#define for_vector(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x){
bool w = 1;x = 0;
char c = getchar();
while(!isdigit(c) && c != '-')c = getchar();
if(c == '-')w = 0, c = getchar();
while(isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if(!w)x=-x;
}
template <typename T>
void Write(T x){
if(x < 0) {
putchar('-');
x=-x;
}
if(x > 9)Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e5 + 10;
const int K = 2e2 + 10;
struct Node{
ll x, y;
Node (ll x = 0, ll y = 0):x(x), y(y) {}
}p[2][N];
Node operator - (const Node &a, const Node &b) {
return Node(a.x - b.x, a.y - b.y);
}
ll operator * (const Node &a, const Node &b) {
return a.x * b.y - a.y * b.x;
}
int q[N];
int n, k;
ll s[N];
ll cal(Node las, int now) {
return las.y + s[now] * las.x;
}
int main() {
Read(n), Read(k);
for_up(i, 1, n) {
Read(s[i]);
s[i] += s[i-1];
}
int ind = 0;
for_up(i, 1, n) p[ind][i] = Node(s[i], -s[i] * s[i]);
for_up(j, 2, k + 1) {
ind ^= 1;
int l = 1, r = 1;
q[1] = j - 1;
for_up(i, j, n) {
while (l < r && cal(p[ind ^ 1][q[l]], i) <= cal(p[ind ^ 1][q[l + 1]], i)) l++;
p[ind][i] = Node(s[i], cal(p[ind ^ 1][q[l]], i) - s[i] * s[i]);
while (l < r && (p[ind ^ 1][i] - p[ind ^ 1][q[r]]) * (p[ind ^ 1][i] - p[ind ^ 1][q[r - 1]]) <= 0) r--;
q[++r] = i;
}
}
Write(p[ind][n].y + s[n] * s[n]);
return 0;
}

BZOJ3675 Apio2014 序列分割 【斜率优化】的更多相关文章

  1. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  2. BZOJ3675: [Apio2014]序列分割(斜率优化)

    Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4186  Solved: 1629[Submit][Status][Discuss] Descript ...

  3. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  4. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  5. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  6. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  7. [Bzoj3675][Apio2014]序列分割(斜率优化)

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4021  Solved: 1569[Submit][Stat ...

  8. BZOJ3675 [Apio2014]序列分割 【斜率优化dp】

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB Submit: 3366  Solved: 1355 [Submit][St ...

  9. BZOJ3675 [Apio2014]序列分割 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8697258.html 题目传送门 - BZOJ3675 题意 对于一个非负整数序列,小H需要重复k次以下的步骤: ...

  10. 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]

    序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...

随机推荐

  1. BZOJ4787/UOJ290 【ZJOI2017】仙人掌

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  2. UIAutomation学习入门

    一.界面的自动化操作 .Ui自动化测试 .软件外挂 二.Win32基础知识 a.Win32中一切元素皆窗口,窗口之间有父子关系.整个桌面是一个“根窗口”. b.进程: 根据进程id拿到进程对象Proc ...

  3. python的os.urandom 的用途

    Python中os.urandom(n)的作用 随机产生n个字节(0-255)的字符串,可以作为随机加密key使用~ >>> index = os.urandom(2) >&g ...

  4. flask学习(十二):for循环遍历

    一. 字典的遍历 语法和python一样,可以使用items().keys().values().iteritems().iterkeys().itervalues() {% for k, v in ...

  5. 搞懂分布式技术5:Zookeeper的配置与集群管理实战

    搞懂分布式技术5:Zookeeper的配置与集群管理实战 4.1 配置文件 ZooKeeper安装好之后,在安装目录的conf文件夹下可以找到一个名为“zoo_sample.cfg”的文件,是ZooK ...

  6. 局部标签(gcc对c的扩展)

    每个语句内嵌表达式都是一个可以声明局部跳转标签的域.一个局部标签只是一个标识符:你可以使用通常的goto语句跳到它--但是只能在它所属的域内这么做.一个局部标签的申明如下:__label__ labe ...

  7. 【Python】什么是闭包

    文章转载自:点这里 在 Python 中很多教材都没有提及什么是闭包,但在定义一个 Decorator 时,就已经用到闭包了.如果不理解什么是闭包,则不可能清晰掌握Decorator 装饰器. 要形成 ...

  8. angularJS---service

    service ng的服务是这样定义的: Angular services are singletons objects or functions that carry out specific ta ...

  9. (转载) jQuery页面加载初始化的3种方法

    jQuery 页面加载初始化的方法有3种 ,页面在加载的时候都会执行脚本,应该没什么区别,主要看习惯吧,本人觉得第二种方法最好,比较简洁. 第一种: $(document).ready(functio ...

  10. C#学习历程(五)[高阶概念]

    >>修饰符的访问权限 private : 私有成员, 在类的内部才可以访问. protected: 保护成员,该类内部和继承类中可以访问. public: 公共成员,完全公开,没有访问限制 ...