http://uoj.ac/problem/179

补充那一列修改方法:

对于第i行:

  $$xi=bi-\sum Aij*xj$$

         $$=bi-\sum_{j!=e} Aij*xj-Aie*xe$$

Pivot后应该是: $$=bi-\sum_{j!=e} Aij*xj-Aie*xl$$

假设第l行已经算对转轴后的系数

则$$xl=bl-\sum Alj*xj$$

所以$$xi=bi-\sum_{j!=e} Aij*xj-Aie*(bl-\sum Alj*xj)$$

$$=bi-Aie*bl-\sum_{j!=e}(Aij-Aie*Alj)*xj-(0-Aie*Alj*xj)$$

观察变化:

可以看出,所有系数只要-Aie*Alj就好了的。因为Aie会在过程中变化,所以一开始先存起来,然后置为0。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<ctime>
using namespace std;
#define Maxn 25
const double eps=0.00000001,INF=1e15; int n,m; int id[Maxn*2];
double a[Maxn][Maxn];
//第一维是限制,B集合
//第二维是元素,N集合
//a[0][xx] -> c 目标函数系数
//a[xx][0] -> b 限制等式常数
//a[xx][yy] -> A 限制等式系数向量
//最大化 sigma(ci*xi),i属于N
//限制 xj=bj-sigma(aji*xi) ,j属于B double myabs(double x) {return x>0?x:-x;} void Pivot(int l,int e)
{
//转轴l和e
swap(id[n+l],id[e]);
double t=a[l][e];a[l][e]=1;
for(int j=0;j<=n;j++) a[l][j]/=t;
for(int i=0;i<=m;i++) if(i!=l&&myabs(a[i][e])>eps)
{
t=a[i][e];a[i][e]=0;
for(int j=0;j<=n;j++) a[i][j]-=a[l][j]*t;
}
} //初始化-辅助问题
bool init()
{
while(1)
{
int e=0,l=0;
for(int i=1;i<=m;i++) if(a[i][0]<-eps&&(!l||(rand()&1))) l=i;
if(!l) break;
for(int j=1;j<=n;j++) if(a[l][j]<-eps&&(!e||(rand()&1))) e=j;
if(!e) {printf("Infeasible\n");return 0;}
Pivot(l,e);
}
return 1;
} //最优化
bool simplex()
{
while(1)
{
int l=0,e=0;double mn=INF;
for(int j=1;j<=n;j++)
if(a[0][j]>eps) {e=j;break;}
if(!e) break;//如果目标变量c都小于0 找到答案
for(int i=1;i<=m;i++) if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)
mn=a[i][0]/a[i][e],l=i;//找a[i][0]/a[i][e]最小的i进行转轴
if(!l) {printf("Unbounded\n");return 0;}
//如果所有的a[i][e]都小于0,说明最优值正无穷
Pivot(l,e);
}
return 1;
} double ans[Maxn]; int main()
{
srand(time(0));
int t;
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=n;i++) scanf("%lf",&a[0][i]);
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++) scanf("%lf",&a[i][j]);
scanf("%lf",&a[i][0]);
}
for(int i=1;i<=n;i++) id[i]=i;
if(init()&&simplex())
{
printf("%.8lf\n",-a[0][0]);
if(t)
{
for(int i=1;i<=m;i++) ans[id[n+i]]=a[i][0];
for(int i=1;i<=n;i++) printf("%.8lf ",ans[i]);
}
}
return 0;
}

  

2017-03-14 21:01:07

【UOJ 179】 #179. 线性规划 (单纯形法)的更多相关文章

  1. 【UOJ #179】线性规划 单纯形模板

    http://uoj.ac/problem/179 终于写出来了单纯性算法的板子,抄的网上大爷的qwq 辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗? 2017-3-6UPD ...

  2. 【UOJ#179】线性规划 单纯形

    题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...

  3. bzoj3118: Orz the MST(线性规划+单纯形法)

    传送门 不难发现,对于每一条树边肯定要减小它的权值,对于每一条非树边要增加它的权值 对于每一条非树边\(j\),他肯定与某些树边构成了一个环,那么它的边权必须大于等于这个环上的所有边 设其中一条边为\ ...

  4. bzoj3265: 志愿者招募加强版(线性规划+单纯形法)

    传送门 鉴于志愿者招募那题我是用网络流写的所以这里还是写一下单纯形好了-- 就是要我们求这么个线性规划(\(d_{ij}\)表示第\(i\)种志愿者在第\(j\)天能不能服务,\(x_i\)表示第\( ...

  5. Oracle汉字转拼音package

    --函数GetHzFullPY(string)用于获取汉字字符串的拼音 --select GetHzFullPY('中华人民共和国') from dual; --返回:ZhongHuaRenMinGo ...

  6. 通过PowerShell获取Windows系统密码Hash

    当你拿到了系统控制权之后如何才能更长的时间内控制已经拿到这台机器呢?作为白帽子,已经在对手防线上撕开一个口子,如果你需要进一步扩大战果,你首先需要做的就是潜伏下来,收集更多的信息便于你判断,便于有更大 ...

  7. [模仿][JS]新浪财经7*24直播

    使用新浪财经7*24直播的数据 简单的做一个山寨品 在线地址:[痛苦啊,有GFW,却没有vpn,往heroku上传浪费了好多时间...] http://wangxinsheng.herokuapp.c ...

  8. 【bzoj1061】 Noi2008—志愿者招募

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 (题目链接) 题意 给定n天,第i天需要ai个志愿者,有m类志愿者,每类志愿者工作时间为[l, ...

  9. BZOJ3118 : Orz the MST

    对于树边显然只需要减少权值,对于非树边显然只需要增加权值 设i不为树边,j为树边 X[i]:i增加量 X[j]:j减少量 C[i]:修改1单位i的代价 对于每条非树边i(u,v),在树上u到v路径上的 ...

随机推荐

  1. (2.1)windows下Nutch1.7的安装

    酒店评论情感分析系统(二)——Nutch安装 一.需求部分 Nutch是Java开发的所以需要下载Java JDK. 下载地址http://java.sun.com/javase/downloads/ ...

  2. LintCode 394: First Will Win

    LintCode 394: First Will Win 题目描述 有n个硬币排成一条线.两个参赛者轮流从右边依次拿走1或2个硬币,直到没有硬币为止.拿到最后一枚硬币的人获胜. 请判定 第一个玩家 是 ...

  3. 用ajax、PHP、session做购物车

    购物车网页代码 1.登录界面login.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...

  4. css3全屏背景显示

    background:url(zhongyi2.png) no-repeat center center fixed;/* -webkit-background-size:cover; -moz-ba ...

  5. NYOJ 1063 生活的烦恼 (二叉树)

    题目链接 描述 生活的暑假刚集训开始,他要决心学好字典树,二叉树,线段树和各种树,但生活在OJ上刷题的时候就遇到了一个特别烦恼的问题.那当然就是他最喜欢的二二叉树咯!题目是这样的:给你一颗非空的二叉树 ...

  6. linux学习记录.2.hello world.c

    安装vim,指令: sudo apt-get install vim 建立一个子目录WorkSpace,指令 mkdir WorkSpace 转到该目录下,指令 cd WorkSpace 新建c文件, ...

  7. php之复制文件——php经典实例

    php之复制文件——php经典实例 <?php function dirCopy($dir1,$dir2){ //判断是否目录存在 if(!file_exists($dir2) || !is_d ...

  8. c#操作pdf文件系列之创建文件

    1.我使用的工具是vs2013,引用的第三方程序集itextpdf 具体安装方法,可以通过nuget搜索iTextSharp然后进行安装. 2具体代码如下 创建两个不同pdf文件,每个地方什么意思代码 ...

  9. juery下拉刷新,div加载更多元素并添加点击事件(二)

    buffer.append("<div class='col-xs-3 "+companyId+"' style='padding-left: 10px; padd ...

  10. C#:Excel上传服务器后导入数据库