Description

Misha trains several ACM teams at the university. He is an experienced coach, and he does not underestimate the meaning of friendly and collaborative atmosphere during training sessions. It used to be that way, but one of the teams happened to win contests a little bit more often than others, and hence became slightly too big for their boots. That does not contribute to positive spirit which is essential for successful training. But Misha knows what to do!
Representatives of k teams participate in Misha’s training sessions, each team has three members. Alas, teams rarely attend en masse, but at least one member per team is always present, of course. During the next training session Misha is going to split everyone into npairs, so that each pair will include representatives of different teams. Players will play a mini-contest against each other in each pair.
A situation when no two mini-contests are won by representatives of one team is the one that suits Misha’s goals best. He may be somewhat cunning when selecting winner in each pair in order to achieve such situation. Find out whether Misha will succeed.

Input

The first line contains two numbers — n and k (1 ≤ n ≤ 10 5, 2 ≤ k ≤ 10 5). n lines follow. i-th of these contains two numbers x iy i (1 ≤ x iy i ≤ kx i ≠ y i) — the numbers of teams, whose representatives are in pair number i.
It is guaranteed that each team is represented in no less than one and no more than three pairs.

Output

If Misha is to succeed, output Yes in the first line. In each of the following n lines output one number — the number of team that is to win in the corresponding pair. If there are several answers, output any.
If Misha is to fail, output No in the only line.

Sample Input

input output
3 4
1 2
2 3
1 4
Yes
2
3
4
6 4
1 2
1 3
1 4
2 3
2 4
3 4
No

题意:给出n对点a,b  要求从没对点中选出一个,且最终选出的点n个数不能存在相同的。输入数据满足每种数最多出现3次,最少出现1次

思路:第i对点的编号2*i, 2*i+1,   因为每个数最多出现3次,那么完全可以枚举每个数,然后相同的数之间的编号连一条边,表示这两个编号不能同时选,这样跑完twosat就能得到一个满足情况的解或无解。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#include <cstdlib>
#include <map>
#include <set>
#include <cmath>
using namespace std;
const int N = 2e6 + ;
struct Edge {
int to, nex;
}e[N];
int head[N], tot;
void init() {
tot = ; memset(head, -, sizeof head);
}
void add(int u, int v) {
e[tot].to = v;
e[tot].nex = head[u];
head[u] = tot++;
}
int Low[N], DFN[N], Stack[N], Belong[N];
int Index, top;
int scc;
bool Instack[N];
int num[N]; void Tarjan(int u) {
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true; for(int i = head[u]; ~i; i = e[i].nex) {
v = e[i].to;
if(!DFN[v]) {
Tarjan(v);
if(Low[u] > Low[v]) Low[u] = Low[v];
}else if(Instack[v] && Low[u] > DFN[v]) Low[u] = DFN[v];
}
if(Low[u] == DFN[u]) {
scc++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
}while(v != u);
}
}
bool solvable(int n) {
memset(DFN, , sizeof DFN);
memset(Instack, false, sizeof Instack);
memset(num, , sizeof num);
Index = scc = top = ;
for(int i = ; i < n; ++i) if(!DFN[i]) Tarjan(i); for(int i = ; i < n; i += ) {
if(Belong[i] == Belong[i ^ ]) return false;
}
return true;
} queue<int> q1, q2;
vector<vector<int> >dag;
int vis[N];
int indeg[N];
int cf[N];
void solve(int n) {
dag.assign(scc+, vector<int>());
memset(indeg, , sizeof indeg);
memset(vis, , sizeof vis);
for(int u = ; u < n; ++u) {
for(int i = head[u]; ~i; i = e[i].nex) {
int v = e[i].to;
if(Belong[u] != Belong[v]) {
dag[ Belong[v] ].push_back(Belong[u]);
indeg[ Belong[u] ]++;
}
}
}
for(int i = ; i < n; i += ) {
cf[ Belong[i] ] = Belong[i ^ ];
cf[ Belong[i ^ ] ] = Belong[i];
}
while(!q1.empty()) q1.pop();
while(!q2.empty()) q2.pop();
for(int i = ; i <= scc; ++i) if(indeg[i] == ) q1.push(i); while(!q1.empty()) {
int u = q1.front();
q1.pop();
if(vis[u] == ) {
vis[u] = ;
vis[ cf[u] ] = ;
}
int sz = dag[u].size();
for(int i = ; i < sz; ++i) {
indeg[ dag[u][i] ]--;
if(indeg[ dag[u][i] ] == ) q1.push(dag[u][i]);
}
}
}
int r[N];
vector<int> g[N];
int main() {
#ifdef LOCAL
freopen("in", "r", stdin);
#endif
int n, m;
while(~scanf("%d%d", &m, &n)) {
init();
int tot = ; int u, v;
for(int i = ; i < m; ++i) {
scanf("%d%d", &u, &v);
r[tot++] = u;
r[tot++] = v;
g[u].push_back( * i);
g[v].push_back( * i + );
} for(int i = ; i <= n; ++i) {
int sx = g[i].size();
for(int j1 = ; j1 < sx; ++j1) {
for(int j2 = j1 + ; j2 < sx; ++j2) {
int v1 = g[i][j1];
int v2 = g[i][j2];
add(v1, v2 ^ );
add(v2, v1 ^ );
}
}
}
if(solvable( * m)) {
solve( * m);
puts("Yes");
for(int i = ; i < m; ++i) {
if(vis[ Belong[ * i] ]) printf("%d\n", r[ * i + ]);
else printf("%d\n", r[ * i]);
}
}else puts("No");
}
return ;
}

URAL 2089 Experienced coach Twosat的更多相关文章

  1. 【2-SAT】URAL - 2089 - Experienced coach

    题意:给出n对点a,b  要求从没对点中选出一个,且最终选出的点n个数不能存在相同的.输入数据满足每种数最多出现3次,最少出现1次 思路:第i对点的编号2*i, 2*i+1,   因为每个数最多出现3 ...

  2. Ural2089:Experienced coach(二分图匹配)

    Misha trains several ACM teams at the university. He is an experienced coach, and he does not undere ...

  3. URAL 2078~2089

    URAL 2078~2089 A - Bowling game 题目描述:给出保龄球每一局击倒的球数,按照保龄球的规则,算出总得分的最小值和最大值. solution 首先是最小值:每一局第一球击倒\ ...

  4. URAL 1873. GOV Chronicles

    唔 神题一道 大家感受一下 1873. GOV Chronicles Time limit: 0.5 secondMemory limit: 64 MB A chilly autumn night. ...

  5. 【HDU 2089】不要62

    http://acm.hdu.edu.cn/showproblem.php?pid=2089 数位dp,参照了打野的博客 预处理出f数组,f[i][j]表示第i位为数字j时的可行的数字总数. 对于区间 ...

  6. 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome

    题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...

  7. ural 2071. Juice Cocktails

    2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...

  8. ural 2073. Log Files

    2073. Log Files Time limit: 1.0 secondMemory limit: 64 MB Nikolay has decided to become the best pro ...

  9. ural 2070. Interesting Numbers

    2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...

随机推荐

  1. [从产品角度学EXCEL 01]-EXCEL是怎样运作的

    这是<从产品角度学EXCEL>系列第二篇. 前言请看:从产品角度学EXCEL-系列0-为什么要关注EXCEL的本质 本文不接受无授权转载,如需转载,请先联系我,非常感谢. 1.EXCEL是 ...

  2. MySql简易配置

    选择standard configuration ,然后next Service Name :服务名字 Launch the MySQL Server automatically:是否开机启动mysq ...

  3. Sublime Text 3 Plugin Better!

    Package Control Cmake ConvertUTF Markdown preview MarkdownEditing Marking Changed Rows

  4. Azure底层架构的初步分析

    之所以要写这样的一篇博文的目的是对于大多数搞IT的人来说,一般都会对这个topic很感兴趣,因为底层架构直接关乎到一个公有云平台的performance,其实最主要的原因是我们的客户对此也非常感兴趣, ...

  5. centos7 使用updatedb和locate命令

    centos7默认是没有安装mlocate的,所以无法使用这两个命令 yum install mlocate 就可以了 参考:https://fedorahosted.org/mlocate/

  6. powershell例子

    例子如下: $ErrorActionPreference="Stop" function getlist{ ls D:\tmp2|select name,extension,ful ...

  7. Git的用法

    Git的用法 Git 的也可以理解为版本控制器.版本控制器(维基的解释):维护工程蓝图的标准作法,能追踪工程蓝图从诞生一直到定案的过程.此外,版本控制也是一种软件工程技巧,借此能在软件开发的过程中,确 ...

  8. jQuery根据name取input值问题

    最近做项目用$("input[name=inputName]").val();去取input值得时候发现取值有问题:总是取第一次输入的值,如果在同一个页面不发生表单提交,然后将in ...

  9. Web项目使用Oracle.DataAccess.dll 类库连接oracle数据库

    首先我用的工具是oracle 32位免安装版+Oracle.DataAccess.dll 32位  文件版本4.121.1.0+vs2013 +win7 64位 Oracle.DataAccess.d ...

  10. spring定时任务详解(@Scheduled注解)( 转 李秀才的博客 )

    在springMVC里使用spring的定时任务非常的简单,如下: (一)在xml里加入task的命名空间 xmlns:task="http://www.springframework.or ...