UVA 11768 - Lattice Point or Not(数论)
UVA 11768 - Lattice Point or Not
题意:给定两个点,构成一条线段。这些点都是十分位形式的,求落在这个直线上的正数点。
思路:先把直线表达成a x + b y = c的形式,a,b, c都化为整数表示。然后利用扩展gcd求出x和y的通解,然后已知min(x1, x2) <= x <= max(x1, x2), min(y1, y2) <= y <= max(y1, y2)。这样一来就能够求出通解中t的范围,t能取的整数就是整数解。就得到答案。
值得注意的是。直线为平行坐标系的情况。要特殊推断一下
代码:
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std; const long long INF = 0x3f3f3f3f3f3f3f;
int t;
long long xx1, yy1, xx2, yy2;
long long a, b, c; long long read(){
double t;
scanf("%lf", &t);
return (long long)(10 * (t + 0.05));
} long long gcd(long long a, long long b) {
if (!b) return a;
return gcd(b, a % b);
} long long exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) {x = 1; y = 0; return a;}
long long d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
} void build() {
a = (yy2 - yy1) * 10;
b = (xx1 - xx2) * 10;
c = (yy2 - yy1) * xx1 + (xx1 - xx2) * yy1;
long long t = gcd(gcd(a, b), c);
a /= t; b /= t; c /= t;
} long long solve() {
long long ans = 0;
long long x, y;
long long d = exgcd(a, b, x, y);
long long up = INF, down = -INF;
if (xx1 > xx2) swap(xx1, xx2);
if (yy1 > yy2) swap(yy1, yy2);
if (c % d) return ans;
if (b / d > 0) {
down = max(down, (long long)ceil((xx1 * d * 1.0 / 10 - x * c * 1.0) / b));
up = min(up, (long long)floor((xx2 * d * 1.0 / 10 - x * c * 1.0) / b));
}
else if (b / d < 0) {
up = min(up, (long long)floor((xx1 * d * 1.0 / 10 - x * c * 1.0) / b));
down = max(down, (long long)ceil((xx2 * d * 1.0 / 10 - x * c * 1.0) / b));
}
else if (xx1 % 10) return ans;
if (a / d > 0) {
down = max(down, (long long)ceil((y * c * 1.0 - d * yy2 * 1.0 / 10) / a));
up = min(up, (long long)floor((y * c * 1.0 - d * yy1 * 1.0 / 10) / a));
}
else if (a / d < 0) {
up = min(up, (long long)floor((y * c * 1.0 - d * yy2 * 1.0 / 10) / a));
down = max(down, (long long)ceil((y * c * 1.0 - d * yy1 * 1.0 / 10) / a));
}
else if (yy1 % 10) return ans;
if (down <= up)
ans += up - down + 1;
return ans;
} int main() {
scanf("%d", &t);
while (t--) {
xx1 = read(); yy1 = read(); xx2 = read(); yy2 = read();
build();
printf("%lld\n", solve());
}
return 0;
}
UVA 11768 - Lattice Point or Not(数论)的更多相关文章
- UVA 11768 Lattice Point or Not(扩展欧几里德)
将直线转化为ax + by = c的形式,然后扩展欧几里得求在[x1, x2]之间的解 对直线与坐标轴平行的特判 调试了好长时间,注意: 1 正负数转化为整型的处理 2 注意判断有无解 #includ ...
- UVA 11768 - Lattice Point or Not
首先本题需要用到扩展欧几里得算法…… 关于exgcd算法的一点简略证明: 那么,对于函数exgcd(a,b)=(d,x,y),其中d满足d=gcd(a,b); (x,y)满足ax+by=d; 则exg ...
- UVA - 11768 Lattice Point or Not (扩展欧几里得)
求一条线段上有多少个整点. 是道扩欧基础题,列出两点式方程,然后分四种情况讨论即可.但细节处理较多很容易写挫(某zzWA了十几发才过掉的). 由于数据精度较小,浮点数比较没有用eps,直接==比较了. ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- Lattice Point or Not UVA - 11768(拓展欧几里得)
原文地址:https://www.cnblogs.com/zyb993963526/p/6783532.html 题意: 给定两个点A(x1,y1)和B(x2,y2),均为0.1的整数倍.统计选段AB ...
- UVa 106 - Fermat vs Pythagoras(数论题目)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVA 10831 - Gerg's Cake(数论)
UVA 10831 - Gerg's Cake 题目链接 题意:说白了就是给定a, p.问有没有存在x^2 % p = a的解 思路:求出勒让德标记.推断假设大于等于0,就是有解,小于0无解 代码: ...
- UVA 12103 - Leonardo's Notebook(数论置换群)
UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) ...
- UVa 1363 - Joseph's Problem(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- Microsoft Visual Studio International Pack 1.0 SR1--关于汉字转拼音
Microsoft Visual Studio International Pack 1.0 SR1————微软的一个类库 地址:http://www.microsoft.com/zh-cn/down ...
- 【linux】linux根文件系统制作
欢迎转载,转载时请保留作者信息,谢谢. 邮箱:tangzhongp@163.com 博客园地址:http://www.cnblogs.com/embedded-tzp Csdn博客地址:http:// ...
- JavaScript-4.6鼠标事件监听,获取鼠标坐标window.event---ShinePans
<html> <head> <meta http-equiv="content-type" content="text/html" ...
- MySQL 暂时文件夹
MySQL数据文件夹/data/mysql所在的上层文件夹/data磁盘空间不足导致MySQL启动失败,所以清理了/data文件夹下除了mysql子文件夹外的其它无用文件夹.重新启动发现还是失败.检查 ...
- ftk学习记(对话框篇)
[声明:版权全部,欢迎转载,请勿用于商业用途. 联系信箱:feixiaoxing @163.com] 前面谈到了输入法,首先看一看效果. 上面有4个输入框,大家能够分别试试,看看效果怎样. 今天,我 ...
- 进阶: 案例八: Drag and Drop(动态)
1.节点 2.UI 3. 4.方法: METHOD wddomodifyview . DATA: lo_container TYPE REF TO cl_wd_uielement_container, ...
- python httpConnection详解
模块urllib,urllib2,httplib的区别 httplib实现了http和https的客户端协议,但是在python中,模块urllib和urllib2对httplib进行了更上层的封装. ...
- BSGS_Baby steps giant steps算法
BSGS这个主要是用来解决这个题: A^x=B(mod C)(C是质数),都是整数,已知A.B.C求x. 在具体的题目中,C一般是所有可能事件的总数. 解: 设m = ceil(sqrt(C))(ce ...
- uva 11732 - strcmp() Anyone? 不错的Trie题
题解:http://blog.csdn.net/u013480600/article/details/23122503 我的代码一直TLE,,,看了人家的之后,认为1.链式前向星比較好,2.*dept ...
- 用Stack实现对多线程的管理范例
多线程就是并发技术,当线程数量超过一定数量时,系统响应就会变慢,所以就必须对线程数量进行控制,那么采用哪种控制方法呢?采用Stack类模仿堆栈,之所以说是模仿,就是因为Stack类毕竟不是真实的堆栈, ...