UVA 11768 - Lattice Point or Not(数论)
UVA 11768 - Lattice Point or Not
题意:给定两个点,构成一条线段。这些点都是十分位形式的,求落在这个直线上的正数点。
思路:先把直线表达成a x + b y = c的形式,a,b, c都化为整数表示。然后利用扩展gcd求出x和y的通解,然后已知min(x1, x2) <= x <= max(x1, x2), min(y1, y2) <= y <= max(y1, y2)。这样一来就能够求出通解中t的范围,t能取的整数就是整数解。就得到答案。
值得注意的是。直线为平行坐标系的情况。要特殊推断一下
代码:
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std; const long long INF = 0x3f3f3f3f3f3f3f;
int t;
long long xx1, yy1, xx2, yy2;
long long a, b, c; long long read(){
double t;
scanf("%lf", &t);
return (long long)(10 * (t + 0.05));
} long long gcd(long long a, long long b) {
if (!b) return a;
return gcd(b, a % b);
} long long exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) {x = 1; y = 0; return a;}
long long d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
} void build() {
a = (yy2 - yy1) * 10;
b = (xx1 - xx2) * 10;
c = (yy2 - yy1) * xx1 + (xx1 - xx2) * yy1;
long long t = gcd(gcd(a, b), c);
a /= t; b /= t; c /= t;
} long long solve() {
long long ans = 0;
long long x, y;
long long d = exgcd(a, b, x, y);
long long up = INF, down = -INF;
if (xx1 > xx2) swap(xx1, xx2);
if (yy1 > yy2) swap(yy1, yy2);
if (c % d) return ans;
if (b / d > 0) {
down = max(down, (long long)ceil((xx1 * d * 1.0 / 10 - x * c * 1.0) / b));
up = min(up, (long long)floor((xx2 * d * 1.0 / 10 - x * c * 1.0) / b));
}
else if (b / d < 0) {
up = min(up, (long long)floor((xx1 * d * 1.0 / 10 - x * c * 1.0) / b));
down = max(down, (long long)ceil((xx2 * d * 1.0 / 10 - x * c * 1.0) / b));
}
else if (xx1 % 10) return ans;
if (a / d > 0) {
down = max(down, (long long)ceil((y * c * 1.0 - d * yy2 * 1.0 / 10) / a));
up = min(up, (long long)floor((y * c * 1.0 - d * yy1 * 1.0 / 10) / a));
}
else if (a / d < 0) {
up = min(up, (long long)floor((y * c * 1.0 - d * yy2 * 1.0 / 10) / a));
down = max(down, (long long)ceil((y * c * 1.0 - d * yy1 * 1.0 / 10) / a));
}
else if (yy1 % 10) return ans;
if (down <= up)
ans += up - down + 1;
return ans;
} int main() {
scanf("%d", &t);
while (t--) {
xx1 = read(); yy1 = read(); xx2 = read(); yy2 = read();
build();
printf("%lld\n", solve());
}
return 0;
}
UVA 11768 - Lattice Point or Not(数论)的更多相关文章
- UVA 11768 Lattice Point or Not(扩展欧几里德)
将直线转化为ax + by = c的形式,然后扩展欧几里得求在[x1, x2]之间的解 对直线与坐标轴平行的特判 调试了好长时间,注意: 1 正负数转化为整型的处理 2 注意判断有无解 #includ ...
- UVA 11768 - Lattice Point or Not
首先本题需要用到扩展欧几里得算法…… 关于exgcd算法的一点简略证明: 那么,对于函数exgcd(a,b)=(d,x,y),其中d满足d=gcd(a,b); (x,y)满足ax+by=d; 则exg ...
- UVA - 11768 Lattice Point or Not (扩展欧几里得)
求一条线段上有多少个整点. 是道扩欧基础题,列出两点式方程,然后分四种情况讨论即可.但细节处理较多很容易写挫(某zzWA了十几发才过掉的). 由于数据精度较小,浮点数比较没有用eps,直接==比较了. ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- Lattice Point or Not UVA - 11768(拓展欧几里得)
原文地址:https://www.cnblogs.com/zyb993963526/p/6783532.html 题意: 给定两个点A(x1,y1)和B(x2,y2),均为0.1的整数倍.统计选段AB ...
- UVa 106 - Fermat vs Pythagoras(数论题目)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVA 10831 - Gerg's Cake(数论)
UVA 10831 - Gerg's Cake 题目链接 题意:说白了就是给定a, p.问有没有存在x^2 % p = a的解 思路:求出勒让德标记.推断假设大于等于0,就是有解,小于0无解 代码: ...
- UVA 12103 - Leonardo's Notebook(数论置换群)
UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) ...
- UVa 1363 - Joseph's Problem(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- check————身份证
-- Access 不支持 Substring 查询,可以替换为 mid 查询. select 序号,姓名,身份证号,性别from 身份表where (len(身份证号)<>15 and ...
- 图解C#_事件
概述 今天用来演示事件的例子是模拟实现一个文件下载类,在这个类中我将定义一个DownLoad事件,这个事件用来在文件下载的过程中,向订阅这个事件的用户发出消息,而这个消息将用DownLoadEvent ...
- 相遇Qt5
使用Qt5.x版本中的不同方面来开发应用程序,着重于新的Qt Quick的技术,提供了编写C++后端的必要内容,并扩展了Qt Quick. 本章提供了关于Qt5高层次的概述.它对开发者有效的展 ...
- Windows Azure 安全最佳实践 - 第 1 部分:深度解析挑战防御对策
我每次与开发人员讨论将应用程序迁移到云时都围绕着两个主要问题. 1. 首先是业务.将应用程序迁移到云可以带来怎样的规模经济? 2. 其次是安全问题."云的安全性如何,尤其是Windows A ...
- android调用音乐播放器,三种方
小弟想请问一下.怎样在自己写的程序中调用系统的音乐播放器呢. 我在google上搜索了.主要是有两种方法,可是都不是我想要的. 第一种是.使用mp3音乐文件的uri.和intent,进行调用.可是这样 ...
- Swift编程语言学习1.4——数值型字面量、数值类型转换
数值型字面量 整数字面量能够被写作: 一个十进制数,没有前缀 一个二进制数,前缀是0b 一个八进制数,前缀是0o 一个十六进制数,前缀是0x 以下的全部整数字面量的十进制值都是17: let deci ...
- PrimusUI
小身材大用途,用PrimusUI驾驭你的页面 “PrimusUI”是自己在借鉴了如今网上很多开源的UI库,再经过自己整理加工的一个简单代码集合. 每个功能块的CSS代码都很少,力求简单易懂,低门槛,代 ...
- struts2官方演示程序总结struts2-blank
struts-2.2.3.1-all\struts-2.2.3.1\apps\struts2-blank总结 1.Html可以访问action ,如下: < head > ...
- 禁用viewstate
<asp:Dropdownlist/>禁用viewstate以后 public partial class _Default : System.Web.UI.Page { ...
- Linux 高性能server编程——高级I/O函数
重定向dup和dup2函数 #include <unistd.h> int dup(int file_descriptor); int dup2(int file_descriptor_o ...