给定一棵树,初始时树为空

操作1,往某个结点注水,那么该结点的子树都注满了水

操作2,将某个结点的水放空,那么该结点的父亲的水也就放空了

操作3,询问某个点是否有水

我们将树进行dfs, 生成in[u], 访问结点u的时间戳,out[u],离开结点u的时间戳

每个结点的in值对应在线段树中的区间的一点

那么对于操作1, 只要将区间[in[u],out[u]] 的值都改为1, 但是如果区间[in[u],out[u]] 原先存在为0的点,那么父区间肯定是空的,这个操作不能

改变父区间的状态,所以需要将in[fa[u]]置为0,

对于操作2,只要将in[u] 置为0就行了

对于操作3,只要区间[in[u],out[u]]内不存在为0的点,那么点u就是有水的

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <math.h>
using namespace std;
#pragma warning(disable:4996)
#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
const int INF = <<;
/*
我们对树进行dfs,求出dfs序列 in[] 和out[] 用线段树维护这个序列
操作1就是将[in[b],out[b]]区间内的点都变为1 , 如果区间内存在0,那么要将b的父结点更新为0,因为虽然更新了[in[b],out[b]],但是祖先不会变
操作2就是将点in[b]置为0
操作3就是看区间[in[b],out[b]] 所以不仅可以将树进行树链剖分,然后用线段树维护
还可以用线段树维护树的dfs序列
*/
const int N = + ;
int in[N], out[N], num, fa[N];
int tree[N * ], laze[N * ];
vector<int> g[N];
void dfs(int u)
{
in[u] = ++num;
for (int i = ; i < g[u].size(); ++i)
{
int v = g[u][i];
if (v != fa[u])
{
fa[v] = u;
dfs(v);
}
}
out[u] = num;
}
void pushDown(int rt)
{
if (laze[rt]==)
{
tree[rt << ] = tree[rt << | ] = laze[rt << ] = laze[rt << | ] = ;
laze[rt] = ;
}
}
void pushUp(int rt)
{
if (tree[rt << ] == || tree[rt << | ] == )
tree[rt] = ;
else
tree[rt] = ;
}
bool flag = false;
void update(int l, int r, int rt, int L, int R, int val)
{
pushDown(rt);
if (L<=l && R>=r)
{
if (tree[rt] == )
flag = true;
tree[rt] = val;
laze[rt] = val;
return;
}
int mid = (l + r) >> ;
if (L <= mid)
update(l, mid, rt << , L, R, val);
if (R > mid)
update(mid + , r, rt << | , L, R, val);
pushUp(rt);
} void query(int l, int r, int rt, int L, int R)
{
pushDown(rt);
if (L<=l && R>=r)
{
//区间内有一个是0,那么所访问的点(根)就是0
if (tree[rt] == )
flag = false;
return;
}
int mid = (l + r) >> ;
if (L <= mid)
query(l, mid, rt << , L, R);
if (R > mid)
query(mid + , r, rt << | , L, R);
pushUp(rt);
}
int main()
{
//freopen("d:/in.txt", "r", stdin);
int n, q, a, b,x, y;
scanf("%d", &n);
for (int i = ; i < n; ++i)
{
scanf("%d%d", &a, &b);
g[a].push_back(b);
g[b].push_back(a);
}
fa[] = ;
dfs();
scanf("%d", &q);
while (q--)
{
scanf("%d%d", &a, &b);
if (a == )
{
flag = false;
//将区间内的点都置为1
update(, n, , in[b], out[b],);
//如果区间内存在0的点,那么fa[b]肯定为空,
if (flag&&fa[b]!=)
{
update(, n, , in[fa[b]],in[fa[b]],);
}
}
else if (a == )
{
update(, n, , in[b],in[b],);
}
else
{
flag = true;
query(,n, , in[b], out[b]);
if (flag)
printf("1\n");
else
printf("0\n");
}
}
return ;
}

CodeForces 343D 线段树维护dfs序的更多相关文章

  1. CF877E Danil and a Part-time Job 线段树维护dfs序

    \(\color{#0066ff}{题目描述}\) 有一棵 n 个点的树,根结点为 1 号点,每个点的权值都是 1 或 0 共有 m 次操作,操作分为两种 get 询问一个点 x 的子树里有多少个 1 ...

  2. P3703 [SDOI2017]树点涂色 LCT维护颜色+线段树维护dfs序+倍增LCA

    \(\color{#0066ff}{ 题目描述 }\) Bob有一棵\(n\)个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点 ...

  3. bzoj 3779: 重组病毒【LCT+线段树维护dfs序】

    %.8lf会WA!!%.8lf会WA!!%.8lf会WA!!要%.10lf!! 和4817有点像,但是更复杂. 首先对于操作一"在编号为x的计算机中植入病毒的一个新变种,在植入一个新变种时, ...

  4. BZOJ 4817 [SDOI2017]树点涂色 (LCT+线段树维护dfs序)

    题目大意:略 涂色方式明显符合$LCT$里$access$操作的性质,相同颜色的节点在一条深度递增的链上 用$LCT$维护一个树上集合就好 因为它维护了树上集合,所以它别的啥都干不了了 发现树是静态的 ...

  5. 【HIHOCODER 1576】 子树中的最小权值(线段树维护DFS序)

    描述 给定一棵N个节点的树,编号1~N.其中1号节点是根,并且第i个节点的权值是Vi. 针对这棵树,小Hi会询问小Ho一系列问题.每次小Hi会指定一个节点x,询问小Ho以x为根的子树中,最小的权值是多 ...

  6. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

  7. codeforces 877 E. Danil and a Part-time Job(线段树(dfs序))

    题目链接:http://codeforces.com/contest/877/problem/E 题解:显然一看就感觉要么树链剖分要么线段树+dfs序,题目要求的操作显然用线段树+dfs序就可以实现. ...

  8. 2018.11.01 NOIP训练 图论(线段树+倍增+dfs序)

    传送门 一道挺妙的题. 对于询问点(u,v),如右图所示,我们可以发现存在一个点m在u->v的路径中,m子树的点到u是最近的,m子树外到v是最近的.其中dis(u,m)=(dis(u,v)-1) ...

  9. Codeforces 343D 线段树

    题意:给你一颗以点1为根的数,有两种操作,一种是把x及其子树的所有点都灌满水,一种是把x及其所有祖先都放空水,一种是询问,问某个点里有没有水? 思路:看网上大多数是树剖,但实际上5e5的数据树剖还是有 ...

随机推荐

  1. 禁用win7自己主动配置ipv4地址

    现象 一台新电脑,连了网线,没有dhcp,须要手动配置Ip. 配置了一个Ip后,发现ping网关不通. ipconfig 发现有2 个IP:  自己主动配置 IPv4 地址  . . . . . . ...

  2. hdu 4715 Difference Between Primes (打表 枚举)

    Difference Between Primes Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  3. FFT算法的物理意义

    FFT是离散傅立叶变换的高速算法,能够将一个信号变换到频域.有些信号在时域上是非常难看出什么特征的,可是如果变换到频域之后,就非常easy看出特征了.这就是非常多信号分析採用FFT变换的原因.另外,F ...

  4. ThinkPhp学习03

    原文:ThinkPhp学习03 一.ThinkPHP 3 的输出      (重点) a.通过 echo 等PHP原生的输出方式在页面中输出 b.通过display方法输出   想分配变量可以使用as ...

  5. 腾讯文学动作密集 疑为手Q发力移动阅读铺路

        移动互联网的门票之争并未结束,百度收购91无线,阿里投资新浪微博.UC浏览器,网易推易信.云音乐等等,都是互联网巨头争夺移动互联网门票的最佳案例.不过,上述任何巨头都不可忽视腾讯这个“狠角色” ...

  6. OpenCV-Python教程(4、形态学处理)

    提示: 转载请详细注明原作者及出处,谢谢! 本文介绍使用OpenCV-Python进行形态学处理 本文不介绍形态学处理的基本概念,所以读者需要预先对其有一定的了解. 定义结构元素 形态学处理的核心就是 ...

  7. [Windows Phone学习笔记]UserControl的使用

    UserControl的使用 开发过程中,多个UI控件需要协同工作,相互交互之后,才可完成一个完整的业务需求,此时可把这些控件封装成为一个整体,相互之间的交互逻辑封装其中,外部调用可无需关心内部逻辑, ...

  8. lightoj 1179(线段树)

    传送门:Josephus Problem 题意:经典约瑟夫问题,有n个人,每次数到第k个人出列,求剩下的最后一人. 分析:用线段树模拟约瑟夫问题,记录区间的减少情况,然后根据每次数到的人在区间排第几位 ...

  9. AVOS_百度百科

    AVOS_百度百科 AVOS 目录 公司产品 AVOS 是 YouTube 创始人 Chad Hurley 和 Steve Chen(陈士骏)创立的互联网公司.    编辑本段公司产品    产品包括 ...

  10. 18.如何自我Struts2它Struts2标签和综合汇总文章有点早

    18.如何自我Struts2它Struts2标签和综合汇总文章有点早[视频] 之前写了一篇"打算做一个视频教程探讨怎样自学计算机相关的技术",优酷上传不了.仅仅好传到百度云上: h ...