1、TF-IDF算法介绍

TF-IDF(term frequency–inverse document frequency,词频-逆向文件频率)是一种用于信息检索(information retrieval)与文本挖掘(text mining)的常用加权技术。

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

TF-IDF的主要思想是:如果某个单词在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

(1)TF是词频(Term Frequency)

词频(TF)表示词条(关键字)在文本中出现的频率。

这个数字通常会被归一化(一般是词频除以文章总词数), 以防止它偏向长的文件。

公式:           即:

其中 ni,j 是该词在文件 dj 中出现的次数,分母则是文件 dj 中所有词汇出现的次数总和;

(2) IDF是逆向文件频率(Inverse Document Frequency)

逆向文件频率 (IDF) :某一特定词语的IDF,可以由总文件数目除以包含该词语的文件的数目,再将得到的商取对数得到。

如果包含词条t的文档越少, IDF越大,则说明词条具有很好的类别区分能力。

公式:

其中,|D| 是语料库中的文件总数。 |{j:ti∈dj}| 表示包含词语 ti 的文件数目(即 ni,j≠0 的文件数目)。如果该词语不在语料库中,就会导致分母为零,因此一般情况下使用 1+|{j:ti∈dj}|

即:

(3)TF-IDF实际上是:TF * IDF

某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。

公式:

golang 实现TF-IDF 算法

 1 package main
2
3 import (
4 "fmt"
5 "math"
6 "sort"
7 "time"
8 )
9
10 type wordTfIdf struct {
11 nworld string
12 value float64
13 }
14
15 func main() {
16 start := currentTimeMillis()
17 FeatureSelect(Load())
18
19
20 cost := currentTimeMillis() - start
21 fmt.Printf("耗时 %d ms ",cost)
22
23 }
24
25 type wordTfIdfs []wordTfIdf
26 type Interface interface {
27 Len() int
28 Less(i, j int) bool
29 Swap(i, j int)
30 }
31
32 func (us wordTfIdfs) Len() int {
33 return len(us)
34 }
35 func (us wordTfIdfs) Less(i, j int) bool {
36 return us[i].value > us[j].value
37 }
38 func (us wordTfIdfs) Swap(i, j int) {
39 us[i], us[j] = us[j], us[i]
40 }
41
42 func currentTimeMillis() int64 {
43 return time.Now().UnixNano() / 1000000
44 }
45 func FeatureSelect(list_words [][]string) {
46 docFrequency := make(map[string]float64, 0)
47 sumWorlds := 0;
48 for _, wordList := range list_words {
49 for _, v := range wordList {
50 docFrequency[v] += 1
51 sumWorlds++;
52 }
53 }
54 wordTf := make(map[string]float64)
55 for k, _ := range docFrequency {
56 wordTf[k] = docFrequency[k] / float64(sumWorlds)
57 }
58 docNum := float64(len(list_words))
59 wordIdf := make(map[string]float64)
60 wordDoc := make(map[string]float64, 0)
61 for k, _ := range docFrequency {
62 for _, v := range list_words {
63 for _, vs := range v {
64 if (k == vs) {
65 wordDoc[k] += 1
66 break
67 }
68 }
69 }
70 }
71 for k, _ := range docFrequency {
72 wordIdf[k] = math.Log(docNum / (wordDoc[k] + 1))
73 }
74 var wordifS wordTfIdfs
75 for k, _ := range docFrequency {
76 var wti wordTfIdf
77 wti.nworld = k
78 wti.value = wordTf[k] * wordIdf[k]
79 wordifS = append(wordifS, wti)
80 }
81 sort.Sort(wordifS)
82 fmt.Println(wordifS)
83 }
84
85 func Load() [][]string {
86 slice := [][]string{
87 {"my", "dog", "has", "flea", "problems", "help", "please"},
88 {"maybe", "not", "take", "him", "to", "dog", "park", "stupid"},
89 {"my", "dalmation", "is", "so", "cute", "I", "love", "him"},
90 {"stop", "posting", "stupid", "worthless", "garbage"},
91 {"mr", "licks", "ate", "my", "steak", "how", "to", "stop", "him"},
92 {"quit", "buying", "worthless", "dog", "food", "stupid"},
93 }
94 return slice
95 }

TF-IDF算法-golang实现的更多相关文章

  1. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  2. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  3. 55.TF/IDF算法

    主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的         一.算法介绍 relevance score算法,简单来说 ...

  4. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  5. tf–idf算法解释及其python代码

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  6. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  7. Elasticsearch学习之相关度评分TF&IDF

    relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse doc ...

  8. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  9. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

随机推荐

  1. mongose + express 写REST API

    一.准备工具 先确保电脑已经安装好nodejs 1.mongoose:安装非常简单: npm install mongoose --save   [mongoose封装了mongodb的方法,调用mo ...

  2. Redis Linux版安装详解

    Redis介绍 我的Linux系统是CentOS7 1.安装Redis 官方下载地址:http://download.redis.io 使用Linux下载:wget http://download.r ...

  3. 个人理解的Lambda表达式的演化过程

    之前在组内进行过相关分享,为防止以后再单独整理,故在此将自己的PPT内容存放下. 所以,多数代码都是以图片的方式展现. 委托 什么是委托? 定义:委托是方法的抽象,它存储的就是一系列具有相同签名和返回 ...

  4. ActiveReports 报表应用教程 (15)---报表换肤

    在葡萄城ActiveReports报表中,可以设置报表中不同控件的样式,然后把这些样式保存到一个外部的XML文件当中,供其他报表使用.如果用户希望同一份报表以不用的外观分发,只需要简单地修改样式表单, ...

  5. wampserver的配置教程

    对于初做PHP网站的朋友来说,第一步肯定是希望在自己电脑是搭建PHP环境,省去空间和上传的麻烦!但搭建环境也不是件容易的事情,特别是对于新手同学来说!因此在这里跟大家介绍我作为一名新手在使用的方便好用 ...

  6. 接口自动化 基于python实现的http+json协议接口自动化测试框架源码(实用改进版)

    基于python实现的http+json协议接口自动化测试框架(实用改进版)   by:授客 QQ:1033553122 欢迎加入软件性能测试交流QQ群:7156436     目录 1.      ...

  7. plsql 导出查询结果

      点击青色按钮即可 说明: 会将查询到的所有数据导出到指定文件,并不是只导出下面列表显示的几行数据: 也不用点击"获取最后页"那个按钮. 注意: 当你选择导出为excel文件时, ...

  8. 字符串匹配常见算法(BF,RK,KMP,BM,Sunday)

    今日了解了一下字符串匹配的各种方法. 并对sundaysearch算法实现并且单元. 字符串匹配算法,是在实际工程中经常遇到的问题,也是各大公司笔试面试的常考题目.此算法通常输入为原字符串(strin ...

  9. RN在Android打包发布App

    参考资料:http://www.jianshu.com/p/b8811669bcb6 RN在Android打包发布App 1-:生成一个签名密钥你可以用keytool命令生成一个私有密钥.在Windo ...

  10. SQLSERVER中的鬼影索引

    SQLSERVER中的鬼影索引 看这篇文章之前可以先看一下鬼影记录 了解了解一下SQLSERVER里的鬼影记录关于鬼影记录的翻译一关于鬼影记录的翻译二 当删除表中的某一条记录的时候,索引页面的对应记录 ...