题面:



solution:

这题和斐波那契数列没有任何关系!!!!!

这题就是一个无脑DP!!!!!!!!!!

因为所有数都要出现至少一次,所以只需考虑其组合而不用考虑其排列,最后乘个 n!就是了(意思就是可以当做这 N 个数是无序的)

dp[i][j]表示前 i 个序列放了 j 种数的方案数,所以在放第 i+1 个数的时候有两种选择

  1. 放一个新的数 则状态变到 dp[i+1][j+1]
  2. 放一个前面有的数 则状态变到 dp[i+1][j]

    对于第一种转移情况有 dp[i+1][j+1]+=dp[i][j]

    而对于第二种转移情况 为了满足最小间隔的要求 所以序列末尾的 M 种数是不可以放

    的 因此可供选择的数有(j-M)种 即 dp[i+1][j] += dp[i][j](j-M)

    算完之后 dp[P][N]
    N!就是结果

code:

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
#define mod 1000000007 using namespace std; int n,m,l;
ll ans=1;
ll f[1005][1005]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} int main(){
//freopen("pf.in","r",stdin);
//freopen("pf.out","w",stdout);
n=qr(),m=qr(),l=qr();
f[1][1]=1;
for(rg i=1;i<l;++i){
for(rg j=1;j<=n;++j){
if(!f[i][j])continue;
if(j<n)f[i+1][j+1]+=f[i][j];
if(j>m)f[i+1][j]+=f[i][j]*(j-m)%mod;
}
}ans=f[l][n];
for(rg i=1;i<=n;++i)
ans=ans*i%mod;
printf("%lld",ans);
return 0;
}

CodeAction_beta02 斐波那契 (多维DP)的更多相关文章

  1. HDU 2041 超级楼梯 (斐波那契数列 & 简单DP)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2041 题目分析:题目是真的水,不难发现规律涉及斐波那契数列,就直接上代码吧. 代码如下: #inclu ...

  2. HihoCoder1164 随机斐波那契(概率DP)

    描述 大家对斐波那契数列想必都很熟悉: a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1). 现在考虑如下生成的斐波那契数列: a0 = 1, ai = aj + ...

  3. Ural 1225. Flags 斐波那契DP

    1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner ...

  4. 【斐波那契DP】HDU 4639——HeHe

    题目:点击打开链接 多校练习赛4的简单题,但是比赛的时候想到了推导公式f(n)=f(n-1)+f(n-2)(就是斐波那契数列),最后却没做出来. 首先手写一下he(不是hehe)连续时的规律.0-1 ...

  5. python-Day4-迭代器-yield异步处理--装饰器--斐波那契--递归--二分算法--二维数组旋转90度--正则表达式

    本节大纲 迭代器&生成器 装饰器  基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...

  6. [ZJOI2011]细胞——斐波那契数列+矩阵加速+dp

    Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的( ...

  7. DP思想在斐波那契数列递归求解中的应用

    斐波那契数列:1, 1, 2, 3, 5, 8, 13,...,即 f(n) = f(n-1) + f(n-2). 求第n个数的值. 方法一:迭代 public static int iterativ ...

  8. Xorequ(BZOJ3329+数位DP+斐波那契数列)

    题目链接 传送门 思路 由\(a\bigoplus b=c\rightarrow a=c\bigoplus b\)得原式可化为\(x\bigoplus 2x=3x\). 又异或是不进位加法,且\(2x ...

  9. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

随机推荐

  1. [咸恩静][Love effect]

    歌词来源:http://music.163.com/#/song?id=31877654 作曲 : Monster Factory/양승욱 [作曲 : Monster Factory/yang-seu ...

  2. 12.16daily_scrum

    这个阶段,我们组需要攻克的技术难题一个是测试及美化界面,另一个是在M1阶段的基础上进一步细化和完善悬浮窗的功能,具体的工作内容如下: 具体工作: 小组成员 今日任务 明日任务 工作时间 李睿琦 图片笔 ...

  3. No.1110_第十一次团队会议

    今天项目进展很多,第一轮迭代基本已经完成了,但是产品还没有发布,主要是因为大家还是太困了,所以再等一等明天再发布吧. 现在队员们急需补觉,因为最近实在是太辛苦了,很多人都没有休息好.现在已经基本完成了 ...

  4. Sprint计划会议内容

    项目名称:蹭课神器 会议内容 首先我们讨论了项目的工作量及实施流程 一.工作认领 二.界面的总体规划 三.主要功能的设计 四.设计数据库 五.编写项目报告 六.软件测试和推广 然后我们进行了工作认领, ...

  5. linux 常用命令-变量命令

    想要的结果,有时候我们想使用上一句命令的执行结果,当然可以通过鼠标去复制粘贴,但是这样既不库又效率低,所以想能不能通过快捷键获取上一句命令的值执行结果呢,答案是不能,后来想如果能把执行结果存入变量那不 ...

  6. 基于RYU的拓扑发现

    基于RYU的拓扑发现 前言 本次实验是一个基于RYU的拓扑发现功能.参考了呈神的实现方式,并加了一些自己实现方式,做了一些数据结构的改动. 数据结构 link_to_port 字典 有两种关系: 一是 ...

  7. Alpha冲刺第5天

    Alpha第六天 1.团队成员 郑西坤 031602542 (队长) 陈俊杰 031602504 陈顺兴 031602505 张胜男 031602540 廖钰萍 031602323 雷光游 03160 ...

  8. PHP 验证IP的合法性

    php验证IP的合法性! function get_ip(){ //判断服务器是否允许$_SERVER if(isset($_SERVER)){ if(isset($_SERVER[HTTP_X_FO ...

  9. WebSocket 时时双向数据,前后端(聊天室)

    https://blog.csdn.net/lecepin/article/details/54632749 实例内容 今天主要说一下微信的WebSocket接口以及在小程序中的使用. WebSock ...

  10. 【刷题】LOJ 2818 「eJOI2018」循环排序

    题目描述 本题译自 eJOI2018 Problem F「Cycle Sort」 给定一个长为 \(n\) 的数列 \(\{a_i\}\) ,你可以多次进行如下操作: 选定 \(k\) 个不同的下标 ...