WHAT I READ FOR DEEP-LEARNING

Today, I spent some time on two new papers proposing a new way of training very deep neural networks (Highway-Networks) and a new activation function for Auto-Encoders (ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF
CO-ADAPTING FEATURES) which evades the use of any regularization methods such as Contraction or Denoising.

Lets start with the first one. Highway-Networks proposes a new activation type similar to LTSM networks and they claim that this peculiar activation is robust to any choice of initialization scheme and learning problems occurred at very deep NNs. It is also incentive to see that they trained models with >100 number of layers. The basic intuition here is to learn a gating function attached to a real activation function that decides to pass the activation or the input itself. Here is the formulation

T(x,Wt) is the gating function and H(x,WH) is the real activation. They use Sigmoid activation for gating and Rectifier for the normal activation in the paper. I also implemented it with Lasagne and tried to replicate the results (I aim to release the code later). It is really impressive to see its ability to learn for 50 layers (this is the most I can for my PC).

The other paper ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF CO-ADAPTING FEATURES suggests the use of non-biased rectifier units for the inference of AEs. You can train your model with a biased Rectifier Unit but at the inference time (test time), you should extract features by ignoring bias term. They show that doing so gives better recognition at CIFAR dataset. They also device a new activation function which has the similar intuition to Highway Networks.  Again, there is a gating unit which thresholds the normal activation function.

The first equation is the threshold function with a predefined threshold (they use 1 for their experiments).  The second equation shows the reconstruction of the proposed model. Pay attention that, in this equation they use square of a linear activation for thresholding and they call this model TLin  but they also use normal linear function which is called TRec. What this activation does here is to diminish the small activations so that the model is implicitly regularized without any additional regularizer. This is actually good for learning over-complete representation for the given data.

For more than this silly into, please refer to papers  and warn me for any mistake.

These two papers shows a new coming trend to Deep Learning community which is using complex activation functions . We can call it controlling each unit behavior in a smart way instead of letting them fire naively. My notion also agrees with this idea. I believe even more complication we need for smart units in our deep models like Spike and Slap networks.

 

WHAT I READ FOR DEEP-LEARNING的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. idou老师教你学istio :基于角色的访问控制

    istio的授权功能,也称为基于角色的访问控制(RBAC),它为istio服务网格中的服务提供命名空间级别.服务级别和方法级别的访问控制.基于角色的访问控制具有简单易用.灵活和高性能等特性.本文介绍如 ...

  2. Hadoop 部署文档

    Hadoop 部署文档 1 先决条件 2 下载二进制文件 3 修改配置文件 3.1 core-site.xml 3.2 hdfs-site.xml 3.3 mapred-site.xml 3.4 ya ...

  3. 微软职位内部推荐-Senior Software Engineer-DUT

    微软近期Open的职位: Document Understanding and Task (DUT) team in STCA focuses on semantic understanding an ...

  4. think in UML(二)

    基础篇——在学习中思考! 在大概了解了UML之后就该系统的学习UML的主要建模元素了,一个个实例帮助我们更好的理解这些元素的重要性并运用相关知识解决实际问题. 在UML里有一个概念叫版型,有些书里也称 ...

  5. http和https的加密方式

    BS盛行的今天有点网络只是很必要啊,首先需要个网络抓包工具wireshark, http:http通过三次握手来通信,握手过程看图1 https:https = http + ssl(secure s ...

  6. PAT 甲级 1022 Digital Library

    https://pintia.cn/problem-sets/994805342720868352/problems/994805480801550336 A Digital Library cont ...

  7. git如何删除已经 add 的文件 (如何撤销已放入缓存区文件的修改)

    使用 git rm 命令即可,有两种选择, 一种是 git rm –cached “文件路径”,不删除物理文件,仅将该文件从缓存中删除: 一种是 git rm –f “文件路径”,不仅将该文件从缓存中 ...

  8. [转帖]LNMP组件安装

    https://lnmp.org/install.html 系统需求: CentOS/RHEL/Fedora/Debian/Ubuntu/Raspbian/Deepin/Aliyun/Amazon/M ...

  9. Oracle client 使用 .net程序连接 数据库时 出现 8.1.7 的解决办法

    1. GS产品 连接oracle数据库时出现错误图示 2. 其实解决这个问题的办法很简单 一般是 修改一下 Oracle的app 目录的权限 最简单的办法是增加 everyone 权限 然后重启机器即 ...

  10. [转帖] k8s kubectl 命令行技巧

    https://jimmysong.io/posts/kubectl-cheatsheet/ Kubectl Cheatsheet kubectl命令技巧大全Posted on November 3, ...