WHAT I READ FOR DEEP-LEARNING

Today, I spent some time on two new papers proposing a new way of training very deep neural networks (Highway-Networks) and a new activation function for Auto-Encoders (ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF
CO-ADAPTING FEATURES) which evades the use of any regularization methods such as Contraction or Denoising.

Lets start with the first one. Highway-Networks proposes a new activation type similar to LTSM networks and they claim that this peculiar activation is robust to any choice of initialization scheme and learning problems occurred at very deep NNs. It is also incentive to see that they trained models with >100 number of layers. The basic intuition here is to learn a gating function attached to a real activation function that decides to pass the activation or the input itself. Here is the formulation

T(x,Wt) is the gating function and H(x,WH) is the real activation. They use Sigmoid activation for gating and Rectifier for the normal activation in the paper. I also implemented it with Lasagne and tried to replicate the results (I aim to release the code later). It is really impressive to see its ability to learn for 50 layers (this is the most I can for my PC).

The other paper ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF CO-ADAPTING FEATURES suggests the use of non-biased rectifier units for the inference of AEs. You can train your model with a biased Rectifier Unit but at the inference time (test time), you should extract features by ignoring bias term. They show that doing so gives better recognition at CIFAR dataset. They also device a new activation function which has the similar intuition to Highway Networks.  Again, there is a gating unit which thresholds the normal activation function.

The first equation is the threshold function with a predefined threshold (they use 1 for their experiments).  The second equation shows the reconstruction of the proposed model. Pay attention that, in this equation they use square of a linear activation for thresholding and they call this model TLin  but they also use normal linear function which is called TRec. What this activation does here is to diminish the small activations so that the model is implicitly regularized without any additional regularizer. This is actually good for learning over-complete representation for the given data.

For more than this silly into, please refer to papers  and warn me for any mistake.

These two papers shows a new coming trend to Deep Learning community which is using complex activation functions . We can call it controlling each unit behavior in a smart way instead of letting them fire naively. My notion also agrees with this idea. I believe even more complication we need for smart units in our deep models like Spike and Slap networks.

 

WHAT I READ FOR DEEP-LEARNING的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. 博客目录 Blog directory

    Linux 学习笔记 Linux/Mac 挂载远程服务器目录到本地 --Mount remote server directory to local PC 远程连接服务器端Jupyter Notebo ...

  2. 现已告别五险一金?迎来社保商保时代保险INSURAUNCE

    现已告别五险一金?迎来社保商保时代保险INSURAUNCE 经济工作会议提出,中国要降低社会保险费,研究精简归并"五险一金",可以说是为社保变革指明了大方向.未来,生育保险将与基本 ...

  3. Flink standalone模式作业执行流程

    宏观流程如下图: client端 生成StreamGraph env.addSource(new SocketTextStreamFunction(...)) .flatMap(new FlatMap ...

  4. Selenium--调用js,对话框处理 (python)

    前言: 本次教程针对Python语言,selenium教程(调用js,对话框处理) 一.对话框处理 更多的时候我们在实际的应用中碰到的并不是简单警告框,而是提供更多功能的会话框. 本节重点: 1.打开 ...

  5. Mac OS系统四种修改Hosts文件的方法列举

    转自:https://blog.csdn.net/u012460084/article/details/40186973 使用Mac OS X系统的用户,在某些时候可能遇到了需要修改系统Hosts文件 ...

  6. LINUX内核分析第五周学习总结——扒开应用系统的三层皮(下)

    LINUX内核分析第五周学习总结——扒开应用系统的三层皮(下) 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/cou ...

  7. asp.net 网页拉伸 到300%不变形方法一

    网页拉伸到300%控件和表格不会出现太大变形 方法: 1.对主页面采用百分比宽度(Width="100%") 2.对于表格使用百分比宽度,包括表格宽度和表格中顶端td宽度 3.对t ...

  8. 个人项目——wc源程序特征统计

    这一次要做的项目是wc——统计程序文件特征的命令行程序. 根据需求需求得到的模式为:wc.exe [parameter][filename] 在[parameter]中,用户通过输入参数与程序交互,需 ...

  9. PAT 甲级 1145 Hashing - Average Search Time

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343236767744 The task of this probl ...

  10. Jira 添加自定义字段

    打开添加自定义字段,并选择字段类型 填写名称,并创建 3.选择关联的界面,并更新