WHAT I READ FOR DEEP-LEARNING

Today, I spent some time on two new papers proposing a new way of training very deep neural networks (Highway-Networks) and a new activation function for Auto-Encoders (ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF
CO-ADAPTING FEATURES) which evades the use of any regularization methods such as Contraction or Denoising.

Lets start with the first one. Highway-Networks proposes a new activation type similar to LTSM networks and they claim that this peculiar activation is robust to any choice of initialization scheme and learning problems occurred at very deep NNs. It is also incentive to see that they trained models with >100 number of layers. The basic intuition here is to learn a gating function attached to a real activation function that decides to pass the activation or the input itself. Here is the formulation

T(x,Wt) is the gating function and H(x,WH) is the real activation. They use Sigmoid activation for gating and Rectifier for the normal activation in the paper. I also implemented it with Lasagne and tried to replicate the results (I aim to release the code later). It is really impressive to see its ability to learn for 50 layers (this is the most I can for my PC).

The other paper ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF CO-ADAPTING FEATURES suggests the use of non-biased rectifier units for the inference of AEs. You can train your model with a biased Rectifier Unit but at the inference time (test time), you should extract features by ignoring bias term. They show that doing so gives better recognition at CIFAR dataset. They also device a new activation function which has the similar intuition to Highway Networks.  Again, there is a gating unit which thresholds the normal activation function.

The first equation is the threshold function with a predefined threshold (they use 1 for their experiments).  The second equation shows the reconstruction of the proposed model. Pay attention that, in this equation they use square of a linear activation for thresholding and they call this model TLin  but they also use normal linear function which is called TRec. What this activation does here is to diminish the small activations so that the model is implicitly regularized without any additional regularizer. This is actually good for learning over-complete representation for the given data.

For more than this silly into, please refer to papers  and warn me for any mistake.

These two papers shows a new coming trend to Deep Learning community which is using complex activation functions . We can call it controlling each unit behavior in a smart way instead of letting them fire naively. My notion also agrees with this idea. I believe even more complication we need for smart units in our deep models like Spike and Slap networks.

 

WHAT I READ FOR DEEP-LEARNING的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. SpringBoot日记——MQ消息队列整合(一)

    除了之前讲到的缓存,我们还会用到消息队列来存储一些消息,为了提升系统的异步性能等等: 消息服务有两个概念需要知道:消息代理-message broker,目的地-destination.消息发送由代理 ...

  2. 批处理修改Hosts文件

    @echo off set stHosts=127.0.0.1 www.XXX.com FOR /F "eol=# tokens=1 delims=" %%i in (%Syste ...

  3. Win7远程桌面的多用户连接破解

    系统是 64位WIN7 旗舰版 每当我用其它机器连WIN7的3389远程桌面时,WIN7那台机子就会退出到注销用户后的状态了,后来我新建了个用户,用不同用户登陆还是退出,也就是说不能同时2个人操作电脑 ...

  4. Ubuntu16.4下QT配置opencv3.1+FFmpeg

    安装依赖环境 sudo apt-get install build-essential sudo apt-get install cmake git libgtk2.0-dev pkg-config ...

  5. java中多态的实现机制

    多态的概念: 简单来说就是事物在运行过程中存在的不同状态,即父类或接口定义的引用变量指向子类或具体实现类的实例对象.程序调用方法在运行期才进行动态绑定,而不是引用变量的类型中定义的方法. 多态存在的前 ...

  6. CentOS7安装OpenStack(Rocky版)-01.控制节点的系统环境准备

    分享一下Rocky版本的OpenStack安装管理经验: OpenStack每半年左右更新一版,目前是版本是201808月发布的版本-R版(Rocky),目前版本安装方法优化较好,不过依然是比较复杂 ...

  7. [Hanani]JAVA大数相关学习记录

    1.Basic remains 题目链接 涉及内容: |大数读入|大数模|大数进制读入时转化为十进制|大数输出时转化为其他进制输出| import java.io.*; import java.mat ...

  8. 20181023-3 每周例行报告(添加PSP)

    此作业要求:[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2100] 一.本周PSP表格 类型 任务 开始时间 结束时间 中断时间 净时 ...

  9. 《Linux内核分析》第四周学习总结 扒开系统调用的三成皮(上)

    第四周 扒开系统调用的三层皮(上) 郝智宇 无转载 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一. ...

  10. 第二阶段Sprint7

    昨天:将“录制”及“保存”整合到一起,修复出现的Bug,使之能够正常运行. 今天:把视频录制整合到时间提醒里,实现视频提醒 遇到的问题:额,整进去直接就停止运行了..也没有报错..