解题:BZOJ 3622 已经没有什么好害怕的了·
用来学习二项式反演的题目
大于等于/小于等于 反演出 恰好等于
设前者为f(n),后者为g(n),则有$f(n)=\sum\limits_{i=0}^nC_n^ig(n)<->g(n)=\sum\limits_{i=0}^n(-1)^iC_n^if(i)$
这里我们$n^2$地dp求出$f(i)$表示a>b的组数大于等于i的方案数然后套二项式反演即可。设$dp[i][j]$表示前i个物品产生了j组a>b的配对的方案数,那么$dp[i][j]=dp[i-1][j]+(lst-j+1)*dp[i-1[j-1]$,其中lst表示b中小于a_i的数的数目,最后$f(i)=dp[n][i]*(n-i)!$。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=1e9+;
int n,m,ans,a[N],b[N],lst[N];
int f[N],g[N],fac[N],inv[N],dp[N][N];
void Add(int &x,int y)
{
x+=y;
if(x<) x+=mod;
else if(x>=mod) x-=mod;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
int C(int a,int b)
{
return 1ll*fac[a]*inv[b]%mod*inv[a-b]%mod;
}
void Pre()
{
fac[]=inv[]=,m=(n+m)/;
for(int i=;i<=;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[]=Qpow(fac[],mod-);
for(int i=;i;i--) inv[i]=1ll*inv[i+]*(i+)%mod;
}
int main()
{
scanf("%d%d",&n,&m),Pre();
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++) scanf("%d",&b[i]);
sort(a+,a++n),sort(b+,b++n),dp[][]=;
for(int i=;i<=n;i++) lst[i]=lower_bound(b+,b++n,a[i])-b-;
for(int i=;i<=n;i++)
{
dp[i][]=dp[i-][];
for(int j=;j<=n;j++)
dp[i][j]=(dp[i-][j]+1ll*max(,lst[i]-j+)*dp[i-][j-]%mod)%mod;
}
for(int i=;i<=n;i++) g[i]=1ll*dp[n][i]*fac[n-i]%mod;
for(int i=m;i<=n;i++)
Add(ans,(((i-m)&)?-1ll:1ll)*C(i,m)*g[i]%mod);
printf("%d",ans);
return ;
}
解题:BZOJ 3622 已经没有什么好害怕的了·的更多相关文章
- BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)
今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...
- [BZOJ 3622]已经没有什么好害怕的了
世萌萌王都拿到了,已经没有什么好害怕的了—— (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗? (作大死) 这 ...
- ●BZOJ 3622 已经没有什么好害怕的了
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解: 容斥,dp1).可以求出需要多少对"糖果>药片"(K ...
- bzoj 3622 已经没有什么好害怕的了——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...
- BZOJ 3622: 已经没有什么好害怕的了(二项式反演)
传送门 解题思路 首先将\(a\),\(b\)排序,然后可以算出\(t(i)\),表示\(a(i)\)比多少个\(b(i)\)大,根据容斥套路,设\(f(k)\)表示恰好有\(k\)个\(a(i)\) ...
- 【BZOJ 3622】3622: 已经没有什么好害怕的了(DP+容斥原理)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 683 Solved: 328 Description Input ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
随机推荐
- 20155202张旭 Exp6 信息收集与漏洞扫描
20155202张旭 Exp6 信息收集与漏洞扫描 一.实践目标与内容 1.实践目标: 掌握信息搜集的最基础技能. 具体有: 各种搜索技巧的应用 DNS IP注册信息的查询 基本的扫描技术:主机发现. ...
- 20155216 Exp3 免杀原理与实践
Exp3 免杀原理与实践 基于特征码的改变来实现免杀(实践过程记录) MSF编码器编译后门检测 可以通过VirSCAN来检验后门抗杀能力. ps:选择后门前修改其文件名,不得含有数字. 如上图所示,3 ...
- 2017-2018-2 20155224『网络对抗技术』Exp8:Web基础
实践具体要求 Web前端HTML(0.5分) 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTML. Web前端javascipt(0.5分) 理 ...
- 20155325 Exp6 信息搜集与漏洞扫描
实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 实践内容 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的 ...
- Android开发——进程间通信之Messenger
0. 前言 不论是Android还是其他操作系统,都会有自己的IPC机制,所谓IPC(Inter-Process Communication)即进程间通信.首先线程和进程是很不同的概念,线程是CPU ...
- 关于Trie的一些算法
最近学习了一下关于Trie的一些姿势,感觉很实用. 终于不用每次看到字符串判重等操作就只想到hash了 关于Trie的定义,来自百度百科 在计算机科学中,Trie,又称前缀树或字典树,是一种有序树状的 ...
- [清华集训2015 Day2]矩阵变换-[稳定婚姻模型]
Description 给出一个N行M列的矩阵,保证满足以下性质: M>N. 矩阵中每个数都是 [0,N]中的自然数. 每行中, [1,N]中每个自然数刚好出现一次,其余的都是0. 每列中,[1 ...
- CS190.1x-ML_lab4_ctr_student
这次lab主要主要是研究click-through rate (CTR).数据集来自于Kaggle的Criteo Labs dataset.相关ipynb文件见我github. 作业分成5个部分:on ...
- Spring+SpringMVC+MyBatis整合基础篇(三)搭建步骤
作者:13GitHub:https://github.com/ZHENFENG13版权声明:本文为原创文章,未经允许不得转载. 框架介绍 Spring SpringMVC MyBatis easyUI ...
- PAT-1004 Counting Leaves
1004 Counting Leaves (30 分) A family hierarchy is usually presented by a pedigree tree. Your job is ...