转载请注明出处:https://www.cnblogs.com/White-xzx/

原文地址:https://arxiv.org/abs/1702.05891

Caffe-code:https://github.com/zhufengx/SRN_multilabel

如有不准确或错误的地方,欢迎交流~

  

  空间正则化网络(Spatial Regularization Network, SRN),学习所有标签间的注意力图(attention maps),并通过可学习卷积挖掘标签间的潜在关系,结合正则化分类结果和 ResNet-101 网络的分类结果,以提高图像分类表现。

【SRN的优势】

  (1)挖掘图像多标签之间的语义和空间关联性,较大地提高精度;

  (2)当网络模型对具有空间相关标签的图片训练后,注意力机制自适应地关注图像的相关区域

  (3)图像级标注,端到端训练

    

【SRN网络结构】

  (1)Main Net:ResNet-101,针对各标签分别学习得到独立的分类器。“Res-2048” 表示具有2048输出的 ResNet 网络模块;

  (2)SRN 采用ResNet-101的视觉特征作为输入,利用注意力机制学习得到标签间的正则空间关系;

  (3)结合主网络和SRN的分类结果得到最终的分类置信度;

  【Main Net】

  

  【SRN:注意力机制 fatt(·)】

  当图像存在某个标签时,更多的注意力应该放在相关的区域,标签注意力图编码了标签对应的丰富空间信息。l被标记则l相关区域的注意力值应该更高

  

  

   注意力图能用于产生更鲁棒的空间正则信息,但每个标签的注意力图总是和为1,可能会突出错误位置,造成错误的空间正则信息,论文提出使用加权注意力图U,U解码了标签局部和全局的置信分数(confidence)。

  

  【SRN:fsr(·)结构】

  conv2、conv3多通道,512输出,捕捉多标签的语义关系;

  conv4单通道,2048输出,4个kernel为一组缠绕1个相同的特征通道,不同kernel捕捉语义关联标签间的不同空间关系。

  

【Multiple Steps 分步训练】

  

  分四个阶段: ①只训练主网络, 基于 ResNet,pretrained on ImageNet,fcnn 和 fcls;

        ②固定 fcnn 和 fcls, 训练 fatt;

        ③固定 fcnn, fcls和 fatt,训练 fsr;

        ④联合训练整个网络。

  图像增强策略: ①resize为256×256

          ②裁剪4个角和中心区域,长宽在{256,224,192,168,128}中随机选取

          ③resize为224×224

【实验结果】

  

  

 

【论文阅读】Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification的更多相关文章

  1. Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification

  2. 论文阅读笔记(十七)【ICCV2017】:Dynamic Label Graph Matching for Unsupervised Video Re-Identification

    Introduction 文章主要提出了 Dynamic Graph Matching(DGM)方法,以非监督的方式对多个相机的行人视频中识别出正确匹配.错误匹配的结果.本文主要思想如下图: 具体而言 ...

  3. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

  4. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  5. 论文阅读:Face Recognition: From Traditional to Deep Learning Methods 《人脸识别综述:从传统方法到深度学习》

     论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引 ...

  6. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  7. [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks

    [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...

  8. [论文阅读笔记] node2vec Scalable Feature Learning for Networks

    [论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...

  9. [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks

    [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...

随机推荐

  1. 【转】在SpringMVC Controller中注入Request成员域

    原文链接:https://www.cnblogs.com/abcwt112/p/7777258.html 原文作者:abcwt112 主题 在工作中遇到1个问题....我们定义了一个Controlle ...

  2. noip2018 d2t3 保卫王国 解题报告

    保卫王国 电脑卡懒得把题面挪过来了. 朴素 \[ dp_{i,0}=\sum dp_{s,1}\\ dp_{i,1}=\sum \min(dp_{s,0},dp_{s,1})+p_i \] 然后直接动 ...

  3. 通用权限管理系统底层更换最新Oracle驱动的方法

    通用权限管理系统底层先前访问Oracle数据库时需要客户端安装驱动软件,如下图: 安装完毕还需要一番配置,系统再引用其dll, 现在我们使用了最新的dll 该dll是Oracle出的最新的版本. 通用 ...

  4. Kubernetes Service

    目录 基本概念 服务发现与负载均衡 配置Service 创建一个ClusterIP类型的Service 创建一个指定ClusterIP的Service 创建一个headless service 创建一 ...

  5. Linux通过ssh登录其他服务器,不用输入密码

    有A(192.168.10.163)和B(192.168.10.164)两台服务器,为了使A服务器通过SSH连接B服务器时,免密登录,做以下操作. 1. 登录A(192.168.10.163)服务器( ...

  6. Codeforces 932 E. Team Work(组合数学)

    http://codeforces.com/contest/932/problem/E 题意:   可以看做 有n种小球,每种小球有无限个,先从中选出x种,再在这x种小球中任选k个小球的方案数 选出的 ...

  7. 蓝桥杯 算法训练 单词接龙 _DFS_搜索 字符串比较

    单词接龙 问题描述  单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相 ...

  8. 面板支持单个,多个元素的jQuery图片轮播插件

    一.先附上demo <!doctype html> <html> <head> <meta charset="utf-8"> < ...

  9. [转载]Juicer – 一个Javascript模板引擎的实现和优化

    http://ued.taobao.org/blog/2012/04/juicer-%E4%B8%80%E4%B8%AAjavascript%E6%A8%A1%E6%9D%BF%E5%BC%95%E6 ...

  10. 【LibreOJ】#6354. 「CodePlus 2018 4 月赛」最短路 异或优化建图+Dijkstra

    [题目]#6354. 「CodePlus 2018 4 月赛」最短路 [题意]给定n个点,m条带权有向边,任意两个点i和j还可以花费(i xor j)*C到达(C是给定的常数),求A到B的最短距离.\ ...