import numpy as np

def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1]
return postingList,classVec def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet) def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = np.ones(numWords)
p1Num = np.ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if(trainCategory[i] == 1):
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num/p1Denom)
p0Vect = np.log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)
p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0 def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if(word in vocabList):
returnVec[vocabList.index(word)] += 1
return returnVec def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)) testingNB()

import re
import numpy as np def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet) def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if(word in vocabList):
returnVec[vocabList.index(word)] += 1
return returnVec def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = np.ones(numWords)
p1Num = np.ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if(trainCategory[i] == 1):
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num/p1Denom)
p0Vect = np.log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive def textParse(bigString):
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2] def spamTest():
docList=[]
classList = []
fullText =[]
for i in range(1,26):
wordList = textParse(open('D:\\LearningResource\\machinelearninginaction\\Ch04\\email\\spam\\%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('D:\\LearningResource\\machinelearninginaction\\Ch04\\email\\ham\\%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = list(np.arange(50))
testSet=[]
for i in range(10):
randIndex = int(np.random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]
trainClasses = []
for docIndex in trainingSet:
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(np.array(trainMat),np.array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if(classifyNB(np.array(wordVector),p0V,p1V,pSpam) != classList[docIndex]):
errorCount += 1
print("classification error",docList[docIndex])
print('the error rate is: ',float(errorCount)/len(testSet)) spamTest()

吴裕雄 python 机器学习-NBYS(1)的更多相关文章

  1. 吴裕雄 python 机器学习-NBYS(2)

    import matplotlib import numpy as np import matplotlib.pyplot as plt n = 1000 xcord0 = [] ycord0 = [ ...

  2. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  3. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  4. 吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  5. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  6. 吴裕雄 python 机器学习——ElasticNet回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  7. 吴裕雄 python 机器学习——Lasso回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  8. 吴裕雄 python 机器学习——岭回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  9. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

随机推荐

  1. Hadoop的RPC工作原理

    RPC远程过程调用: Hadoop的远程过程调用(Remote Procedure Call,RPC)是Hadoop中核心通信机制,RPC主要通过所有Hadoop的组件元数据交换,如MapReduce ...

  2. php数组和部分操作函数

    1. 数组定义 数组的定义使用 array()方式定义,可以定义空数组: <?php $number = array(1,3,5,7,9); //定义空数组 $result = array(); ...

  3. Android获取文件夹下的所有子文件名称;

    public static List<String> getFilesAllName(String path) { File file=new File(path); File[] fil ...

  4. redis如何随系统启动

    Redis可以通过命令redis-server启动,但这种启动方式适用于开发环境,对于生产环境来说,配置好redis的配置文件,并使redis随linux启动则更加方便些,下面则记录下redis如何随 ...

  5. 4、申请开发(Development)证书和描述文件

    开发(Development)证书用于测试环境下使用,可以直接安装到手机上(不用提交到Appstore),但一个描述文件最多只能绑定100台设备(因此通过这种证书正式发布应用是行不通的). 申请开发( ...

  6. 2014最新 iOS App 提交上架store 详细流程

    http://blog.csdn.net/tt5267621/article/details/39430659

  7. c++ map 官方样例

    #include <iostream> #include <string> #include <iomanip> #include <map> temp ...

  8. 如何利用Social Listening从社会化媒体中“提炼”有价值的信息?

    本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 在本文中,笔者将会介绍大数据分析主要的处对象---社会化媒 ...

  9. openx 添加新表和据库表和字段

    OpenX的版本是2.8.10.在数据表加完数据库之后,还不能读取和保存字段. OpenX使用scheme来 管理数据库表和字段, 修改数据库结构同时也要修改相关schema, 一个是etc/tabl ...

  10. Hibernate架构

    参照: http://blog.csdn.net/lovesummerforever/article/details/19169779 http://www.w3cschool.cn/hibernat ...