吴裕雄 python 机器学习-NBYS(1)
import numpy as np def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1]
return postingList,classVec def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet) def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = np.ones(numWords)
p1Num = np.ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if(trainCategory[i] == 1):
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num/p1Denom)
p0Vect = np.log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)
p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0 def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if(word in vocabList):
returnVec[vocabList.index(word)] += 1
return returnVec def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)) testingNB()
import re
import numpy as np def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet) def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if(word in vocabList):
returnVec[vocabList.index(word)] += 1
return returnVec def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = np.ones(numWords)
p1Num = np.ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if(trainCategory[i] == 1):
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num/p1Denom)
p0Vect = np.log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive def textParse(bigString):
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2] def spamTest():
docList=[]
classList = []
fullText =[]
for i in range(1,26):
wordList = textParse(open('D:\\LearningResource\\machinelearninginaction\\Ch04\\email\\spam\\%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('D:\\LearningResource\\machinelearninginaction\\Ch04\\email\\ham\\%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = list(np.arange(50))
testSet=[]
for i in range(10):
randIndex = int(np.random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]
trainClasses = []
for docIndex in trainingSet:
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(np.array(trainMat),np.array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if(classifyNB(np.array(wordVector),p0V,p1V,pSpam) != classList[docIndex]):
errorCount += 1
print("classification error",docList[docIndex])
print('the error rate is: ',float(errorCount)/len(testSet)) spamTest()
吴裕雄 python 机器学习-NBYS(1)的更多相关文章
- 吴裕雄 python 机器学习-NBYS(2)
import matplotlib import numpy as np import matplotlib.pyplot as plt n = 1000 xcord0 = [] ycord0 = [ ...
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——ElasticNet回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——Lasso回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——岭回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
随机推荐
- react mobx webpack 使用案例
1.package.json: { "name": "wtest", "version": "1.0.0", " ...
- C#写Excel(OleDB)
先辟谣(至少对Excel2010来说) IMEX ( IMport EXport mode )设置 IMEX 有三种模式,各自引起的读写行为也不同,容後再述: 0 is Export mode:只能写 ...
- CS229 6.9 Neurons Networks softmax regression
SoftMax回归模型,是logistic回归在多分类问题的推广,即现在logistic回归数据中的标签y不止有0-1两个值,而是可以取k个值,softmax回归对诸如MNIST手写识别库等分类很有用 ...
- RxJava学习;数据转换、线程切换;
Observable(被观察者,发射器)发送数据: just:发送单个的数据: Observable.just("cui","chen","bo&qu ...
- oracle查看和替换含不可见字符(空白)
select lengthb('1397256'), dump('1397256') from dual; select ascii('') from dual; ), '') from dua ...
- html5本地存储技术 localstorage
html在使用的时候,例如在input框里面,用户输入信息的时候,一点提交信息就开始向后天交互 但是一刷新或者用户再打开一个新的网页又得重新输入,这就牵扯到本地存储的问题 LocalStorage,是 ...
- [UGUI]图文混排(六):点击区域
点击区域可以分成两部分来分析: 0.Rect 搜索api:Rect和Rect.Rect,可以知道: 在GUI和GUILayout中,Rect的原点在左上角,向右为x轴正方向,向下为y轴正方向: 除此之 ...
- MemberShip的 链接字符串的使用
1.运行asp.net Sql Server注册工具:aspnet_regsql.exe,详细参见:http://msdn.microsoft.com/zh-cn/library/ms229862(v ...
- <基础> PHP 进阶之 函数(Function)
引用参数 $name = "eko"; function chang_name(&$name){ $name .= '_after_change'; } chang_nam ...
- MVC基于角色权限控制--管理角色
管理角色分为 添加角色.删除角色.修改角色.给角色分配权限(修改角色权限) 新建RoleInfoController继承BaseController namespace CZBK.ItcastOA.W ...