一、题目

POJ2387

二、分析

Bellman-Ford算法

 该算法是求单源最短路的,核心思想就是不断去更新到起点的最短距离,更新的前提是没有负边。如果有负边需要手动控制循环次数。

Dijkstra算法

 同样是单源最短路,它的核心是

 (1) 找到最短距离已经确定的顶点,再从该顶点出发,更新与它相邻的点的最短距离。

 (2) 对于最短距离已经确定的点不再更新。

Floyd算法

 可以求解任意两点之间的最短距离。但是这题会TLE。

三、AC代码

 1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <vector>
5 #include <fstream>
6 using namespace std;
7 const int MAXN = 2e3+14;
8 const int INF = 0x3f3f3f3f;
9 struct edge
10 {
11 int from, to, cost;
12 }E[MAXN<<1];
13 int T, N, C;
14 int dist[MAXN];
15 void Bellman_Ford()
16 {
17 memset(dist, INF, sizeof(dist));
18 dist[1] = 0;
19 while(1)
20 {
21 bool flag = 0;
22 for(int i = 0; i < C; i++)
23 {
24 if(dist[E[i].from] != INF && dist[E[i].to] > dist[E[i].from] + E[i].cost)
25 {
26 dist[E[i].to] = dist[E[i].from] + E[i].cost;
27 flag = 1;
28 }
29 }
30 if(!flag)
31 break;
32 }
33 }
34 int main()
35 {
36 //freopen("in.txt", "r", stdin);
37 scanf("%d%d", &T, &N);
38 C = 0;
39 int a, b ,c;
40 for(int i = 0; i < T; i++)
41 {
42 scanf("%d%d%d", &a, &b, &c);
43 E[C].from = a, E[C].to = b, E[C].cost = c;
44 C++;
45 E[C].from = b, E[C].to = a, E[C].cost = c;
46 C++;
47 }
48 Bellman_Ford();
49 printf("%d\n", dist[N]);
50 return 0;
51 }

Bellman_Ford

 1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <vector>
5 #include <fstream>
6 #include <vector>
7 #include <queue>
8 using namespace std;
9 typedef pair<int, int> P;
10 const int MAXN = 2e3+14;
11 const int INF = 0x3f3f3f3f;
12 struct edge
13 {
14 int from, to, cost;
15 edge(int f, int t, int c)
16 {
17 from = f, to = t, cost = c;
18 }
19 };
20 vector<edge> G[MAXN];
21 priority_queue<P> pq;
22 int T, N;
23 int dist[MAXN];
24
25 void Dijkstra(int s)
26 {
27 memset(dist, INF, sizeof(dist));
28 dist[s] = 0;
29 pq.push(P(0, s));
30 while(!pq.empty())
31 {
32 P p = pq.top();
33 pq.pop();
34 int v = p.second;
35 if(dist[v] < p.first)
36 continue;
37 for(int i = 0; i < G[v].size(); i++)
38 {
39 edge e = G[v][i];
40 if(dist[e.to] > dist[v] + e.cost)
41 {
42 dist[e.to] = dist[v] + e.cost;
43 pq.push(P(dist[e.to], e.to));
44 }
45
46 }
47 }
48 }
49
50 int main()
51 {
52 //freopen("in.txt", "r", stdin);
53 scanf("%d%d", &T, &N);
54 int a, b ,c;
55 for(int i = 0; i < T; i++)
56 {
57 scanf("%d%d%d", &a, &b, &c);
58 G[a].push_back(edge(a, b, c));
59 G[b].push_back(edge(b, a, c));
60 }
61 Dijkstra(1);
62 printf("%d\n", dist[N]);
63 return 0;
64 }

Dijkstra

POJ_2387 Til the Cows Come Hom 【最短路】的更多相关文章

  1. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  2. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  3. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  4. Til the Cows Come Home(最短路模板题)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Description Bessie is ...

  5. POJ 2387 Til the Cows Come Home(最短路模板)

    题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...

  6. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  7. POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...

  8. POJ 2387 Til the Cows Come Home 【最短路SPFA】

    Til the Cows Come Home Description Bessie is out in the field and wants to get back to the barn to g ...

  9. POj2387——Til the Cows Come Home——————【最短路】

    A - Til the Cows Come Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & ...

随机推荐

  1. 力扣119.杨辉三角II-C语言实现

    题目 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 来源:力扣(LeetCod ...

  2. HDU2837 Calculation(指数循环节)题解

    题意: 已知\(f(0)=1,f(n)=(n\%10)^{f(n/10)}\),求\(f(n)\mod m\) 思路: 由扩展欧拉定理可知:当\(b>=m\)时,\(a^b\equiv a^{b ...

  3. Web 页面生命周期 All In One

    Web 页面生命周期 All In One Web Page LifeCycle All In One refs xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允 ...

  4. 快速下载 Visual Studio Code

    快速下载 Visual Studio Code https://visualstudio.microsoft.com/zh-hant/downloads/ 切换 cdn https://az76429 ...

  5. website url spam

    website url spam xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用户才可以访问!

  6. website 性能检测 & 前端性能优化

    website 性能检测 & 前端性能优化 https://cdn.xgqfrms.xyz/ https://mobile.xgqfrms.xyz/ PageSpeed Insights ht ...

  7. Flutter web & Flutter

    Flutter web & Flutter Google I/O 2019 recap & GDG shanghai flutter 与 Android 原生,应用应用,性能对比, d ...

  8. Node.js Debugger

    Node.js Debugger VS Code & Chrome DevTools https://nodejs.org/api/debugger.html https://nodejs.o ...

  9. NGK官方又出助力市场计划方案 1万枚VAST任性送

    近期NGK官方的一系列动作,可以说是在向外界宣告:NGK2.0即将来袭,席卷加密数字货币市场.前一段时间,NGK官方宣布,NGK公链布局算力领域,打造NGK算力生态星空计划,并推出了SPC星空币.目前 ...

  10. 双十一NGK官方快讯!