一、题目

POJ2387

二、分析

Bellman-Ford算法

 该算法是求单源最短路的,核心思想就是不断去更新到起点的最短距离,更新的前提是没有负边。如果有负边需要手动控制循环次数。

Dijkstra算法

 同样是单源最短路,它的核心是

 (1) 找到最短距离已经确定的顶点,再从该顶点出发,更新与它相邻的点的最短距离。

 (2) 对于最短距离已经确定的点不再更新。

Floyd算法

 可以求解任意两点之间的最短距离。但是这题会TLE。

三、AC代码

 1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <vector>
5 #include <fstream>
6 using namespace std;
7 const int MAXN = 2e3+14;
8 const int INF = 0x3f3f3f3f;
9 struct edge
10 {
11 int from, to, cost;
12 }E[MAXN<<1];
13 int T, N, C;
14 int dist[MAXN];
15 void Bellman_Ford()
16 {
17 memset(dist, INF, sizeof(dist));
18 dist[1] = 0;
19 while(1)
20 {
21 bool flag = 0;
22 for(int i = 0; i < C; i++)
23 {
24 if(dist[E[i].from] != INF && dist[E[i].to] > dist[E[i].from] + E[i].cost)
25 {
26 dist[E[i].to] = dist[E[i].from] + E[i].cost;
27 flag = 1;
28 }
29 }
30 if(!flag)
31 break;
32 }
33 }
34 int main()
35 {
36 //freopen("in.txt", "r", stdin);
37 scanf("%d%d", &T, &N);
38 C = 0;
39 int a, b ,c;
40 for(int i = 0; i < T; i++)
41 {
42 scanf("%d%d%d", &a, &b, &c);
43 E[C].from = a, E[C].to = b, E[C].cost = c;
44 C++;
45 E[C].from = b, E[C].to = a, E[C].cost = c;
46 C++;
47 }
48 Bellman_Ford();
49 printf("%d\n", dist[N]);
50 return 0;
51 }

Bellman_Ford

 1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <vector>
5 #include <fstream>
6 #include <vector>
7 #include <queue>
8 using namespace std;
9 typedef pair<int, int> P;
10 const int MAXN = 2e3+14;
11 const int INF = 0x3f3f3f3f;
12 struct edge
13 {
14 int from, to, cost;
15 edge(int f, int t, int c)
16 {
17 from = f, to = t, cost = c;
18 }
19 };
20 vector<edge> G[MAXN];
21 priority_queue<P> pq;
22 int T, N;
23 int dist[MAXN];
24
25 void Dijkstra(int s)
26 {
27 memset(dist, INF, sizeof(dist));
28 dist[s] = 0;
29 pq.push(P(0, s));
30 while(!pq.empty())
31 {
32 P p = pq.top();
33 pq.pop();
34 int v = p.second;
35 if(dist[v] < p.first)
36 continue;
37 for(int i = 0; i < G[v].size(); i++)
38 {
39 edge e = G[v][i];
40 if(dist[e.to] > dist[v] + e.cost)
41 {
42 dist[e.to] = dist[v] + e.cost;
43 pq.push(P(dist[e.to], e.to));
44 }
45
46 }
47 }
48 }
49
50 int main()
51 {
52 //freopen("in.txt", "r", stdin);
53 scanf("%d%d", &T, &N);
54 int a, b ,c;
55 for(int i = 0; i < T; i++)
56 {
57 scanf("%d%d%d", &a, &b, &c);
58 G[a].push_back(edge(a, b, c));
59 G[b].push_back(edge(b, a, c));
60 }
61 Dijkstra(1);
62 printf("%d\n", dist[N]);
63 return 0;
64 }

Dijkstra

POJ_2387 Til the Cows Come Hom 【最短路】的更多相关文章

  1. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  2. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  3. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  4. Til the Cows Come Home(最短路模板题)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Description Bessie is ...

  5. POJ 2387 Til the Cows Come Home(最短路模板)

    题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...

  6. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  7. POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...

  8. POJ 2387 Til the Cows Come Home 【最短路SPFA】

    Til the Cows Come Home Description Bessie is out in the field and wants to get back to the barn to g ...

  9. POj2387——Til the Cows Come Home——————【最短路】

    A - Til the Cows Come Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & ...

随机推荐

  1. Linux bash fi

    Linux bash fi if..else..fi allows to make choice based on the success or failure of a command. if..e ...

  2. React Toolchains

    React Toolchains Create React App / component library https://create-react-app.dev/docs/getting-star ...

  3. nest cli bug

    nest cli bug Error: Collection "@nestjs/schematics" cannot be resolved. Error: Collection ...

  4. Web 安全 & cookies & HttpOnly

    Web 安全 & cookies & HttpOnly cookie HttpOnly 禁止 js 读取 cookie 的方法 HttpOnly 实现原理 document.cooki ...

  5. 算法的时间复杂度 & 性能对比

    算法的时间复杂度 & 性能对比 累加算法性能对比 // js 累加算法性能对比测试 const n = 10**6; (() => { console.time(`for`); let ...

  6. taro ref & wx.createSeletorQuery

    taro ref & wx.createSeletorQuery https://developers.weixin.qq.com/miniprogram/dev/api/wxml/wx.cr ...

  7. react 异步的setState

    import React from "react"; class App extends React.Component { state = { a: 0 }; component ...

  8. NGK公链助力医疗行业数据安全

    近年来医疗领域的数据泄露事件时有发生,医疗行业数据面临着医疗数据获得不易及缺乏有效管理和数据安全机制问题.而区块链的去中心化.分布式账本等特点正好契合医疗领域的需求点. 医疗数据市场痛点 一.医疗信息 ...

  9. NGK全球行伦敦站,SPC推动全球数字金融创新

    近日,NGK全球巡回路演在英国的首都伦敦盛大落幕,此次路演有幸邀请到了西欧区块链业界弗洛伊德大咖,NGK方面代表鲍利斯以及英国及其组周边国家社群意见代表马丁内斯等人,总计参与人数达到了数十人. 路演一 ...

  10. NGK的发行量是多少?NGK销毁机制是怎么样的?

    代币销毁(Coin Burning),是指将代币从流通中永久性去除.换句话说,被销毁的代币相当于被永久性冻结,再也无法流入市场.那为什么要进行代币销毁呢? 销毁加密货币,可以使剩余加密货币的价值升高, ...