一、题目

POJ2387

二、分析

Bellman-Ford算法

 该算法是求单源最短路的,核心思想就是不断去更新到起点的最短距离,更新的前提是没有负边。如果有负边需要手动控制循环次数。

Dijkstra算法

 同样是单源最短路,它的核心是

 (1) 找到最短距离已经确定的顶点,再从该顶点出发,更新与它相邻的点的最短距离。

 (2) 对于最短距离已经确定的点不再更新。

Floyd算法

 可以求解任意两点之间的最短距离。但是这题会TLE。

三、AC代码

 1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <vector>
5 #include <fstream>
6 using namespace std;
7 const int MAXN = 2e3+14;
8 const int INF = 0x3f3f3f3f;
9 struct edge
10 {
11 int from, to, cost;
12 }E[MAXN<<1];
13 int T, N, C;
14 int dist[MAXN];
15 void Bellman_Ford()
16 {
17 memset(dist, INF, sizeof(dist));
18 dist[1] = 0;
19 while(1)
20 {
21 bool flag = 0;
22 for(int i = 0; i < C; i++)
23 {
24 if(dist[E[i].from] != INF && dist[E[i].to] > dist[E[i].from] + E[i].cost)
25 {
26 dist[E[i].to] = dist[E[i].from] + E[i].cost;
27 flag = 1;
28 }
29 }
30 if(!flag)
31 break;
32 }
33 }
34 int main()
35 {
36 //freopen("in.txt", "r", stdin);
37 scanf("%d%d", &T, &N);
38 C = 0;
39 int a, b ,c;
40 for(int i = 0; i < T; i++)
41 {
42 scanf("%d%d%d", &a, &b, &c);
43 E[C].from = a, E[C].to = b, E[C].cost = c;
44 C++;
45 E[C].from = b, E[C].to = a, E[C].cost = c;
46 C++;
47 }
48 Bellman_Ford();
49 printf("%d\n", dist[N]);
50 return 0;
51 }

Bellman_Ford

 1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <vector>
5 #include <fstream>
6 #include <vector>
7 #include <queue>
8 using namespace std;
9 typedef pair<int, int> P;
10 const int MAXN = 2e3+14;
11 const int INF = 0x3f3f3f3f;
12 struct edge
13 {
14 int from, to, cost;
15 edge(int f, int t, int c)
16 {
17 from = f, to = t, cost = c;
18 }
19 };
20 vector<edge> G[MAXN];
21 priority_queue<P> pq;
22 int T, N;
23 int dist[MAXN];
24
25 void Dijkstra(int s)
26 {
27 memset(dist, INF, sizeof(dist));
28 dist[s] = 0;
29 pq.push(P(0, s));
30 while(!pq.empty())
31 {
32 P p = pq.top();
33 pq.pop();
34 int v = p.second;
35 if(dist[v] < p.first)
36 continue;
37 for(int i = 0; i < G[v].size(); i++)
38 {
39 edge e = G[v][i];
40 if(dist[e.to] > dist[v] + e.cost)
41 {
42 dist[e.to] = dist[v] + e.cost;
43 pq.push(P(dist[e.to], e.to));
44 }
45
46 }
47 }
48 }
49
50 int main()
51 {
52 //freopen("in.txt", "r", stdin);
53 scanf("%d%d", &T, &N);
54 int a, b ,c;
55 for(int i = 0; i < T; i++)
56 {
57 scanf("%d%d%d", &a, &b, &c);
58 G[a].push_back(edge(a, b, c));
59 G[b].push_back(edge(b, a, c));
60 }
61 Dijkstra(1);
62 printf("%d\n", dist[N]);
63 return 0;
64 }

Dijkstra

POJ_2387 Til the Cows Come Hom 【最短路】的更多相关文章

  1. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  2. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  3. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  4. Til the Cows Come Home(最短路模板题)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Description Bessie is ...

  5. POJ 2387 Til the Cows Come Home(最短路模板)

    题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...

  6. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  7. POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...

  8. POJ 2387 Til the Cows Come Home 【最短路SPFA】

    Til the Cows Come Home Description Bessie is out in the field and wants to get back to the barn to g ...

  9. POj2387——Til the Cows Come Home——————【最短路】

    A - Til the Cows Come Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & ...

随机推荐

  1. 利用windows api共享内存通讯

    主要涉及CreateFile,CreateFileMapping,GetLastError,MapViewOfFile,sprintf,OpenFileMapping,CreateProcess Cr ...

  2. spring-cloud-netflix-eureka-client

    服务注册中心eureka-server已经搭好,我们开始编写一个eureka-client,并提供一个hello服务 一.新建module,选择对应的springcloud模块,pom.xml如下: ...

  3. C#通过NI-VISA操作Tektronix TBS 2000B系列示波器

    一.概述 本文描述采用C#语言访问控制Tektronix TBS 2000B 系列示波器.接口协议采用NI-VISA. 最近一个项目需要和一款示波器进行通信,需要对示波器进行一些简单控制并获取到波形数 ...

  4. IDEA插件:快速删除Java代码中的注释

    背景   有时,我们需要删除Java源代码中的注释.目前有不少方法,比如: 实现状态机.该方式较为通用,适用于多种语言(取决于状态机支持的注释符号). 正则匹配.该方式容易误判,尤其是容易误删字符串. ...

  5. php foundation knowledge!

    php foundation knowledge! 1 <?php 2 $p = "PII"; 3 define("XPI",3.1415926); 4 ...

  6. flutter package & pub publish

    flutter package & pub publish dart-library-package https://pub.dev/packages/dart_library_package ...

  7. Learning JavaScript with MDN (call, apply, bind)

    Learning JavaScript with MDN (call, apply, bind) call, apply, bind Object.prototype.toString() 检测 js ...

  8. img & srcset

    img & srcset 性能优化 <img class="fn tj s t u fa ai ht" width="3700" height=& ...

  9. Typescript & React & Vue

    Typescript & React & Vue Typescript & React https://facebook.github.io/create-react-app/ ...

  10. classnames & React & taro

    classnames & React & taro classnames https://www.npmjs.com/package/classnames demo https://g ...