这里给出一个将GrADS数据文件转为netCDF数据文件的脚本示例程序,其它格式数据转netCDF可以参考:

#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2015-3-12
# Purpose: Convert CUACE grads data to netCDF (CUACE/Dust)
# Note: Sample
#-----------------------------------------------------
print 'Loading classes...'
from org.meteoinfo.data import GridData
from org.meteoinfo.data import DataMath
from org.meteoinfo.data.meteodata import MeteoDataInfo
from org.meteoinfo.geoprocess.analysis import ResampleMethods
from org.meteoinfo.data.meteodata.netcdf import NetCDFDataInfo
from org.meteoinfo.projection import ProjectionInfo
from org.meteoinfo.projection import ProjectionNames
from org.meteoinfo.projection import KnownCoordinateSystems
from ucar.nc2 import NetcdfFileWriter
from ucar.nc2 import Attribute
from ucar.ma2 import DataType
from ucar.ma2 import Array
import os.path
import jarray
import datetime
from java.util import Date
from java.text import SimpleDateFormat #Set date
year = 2014
month = 4
day = 23
hour = 0
sdate = datetime.datetime(year, month, day, hour)
print sdate
#Set directory
dataDir = 'U:/data/cuace_dust/dust_example/2014_case'
outDir = dataDir
infn = os.path.join(dataDir, 'dust_post_'+ sdate.strftime('%Y%m%d%H') + '.ctl')
outfn = os.path.join(dataDir, 'WMO_SDS-WAS_Asian_Center_Model_Forecasting_CUACE-Dust_CMA_' \
+ sdate.strftime('%Y-%m-%d') + '.nc')
#Set output X/Y coordinates and projection
toProjInfo = KnownCoordinateSystems.geographic.world.WGS1984
sx = 70.0
xnum = 161
sy = 20
ynum = 71
delta = 0.5
xlist = []
ylist = []
for i in range(0, xnum):
xlist.append(sx + delta * i)
for i in range(0, ynum):
ylist.append(sy + delta * i)
X = jarray.array(xlist, 'd')
Y = jarray.array(ylist, 'd') #Read GrADS data file
print 'Open GrADS data file...'
mdi = MeteoDataInfo()
mdi.openGrADSData(infn)
dataInfo = mdi.getDataInfo()
dataInfo.setBigEndian(True)
fromProjInfo = mdi.getProjectionInfo()
tnum = dataInfo.getTimeNum()
mvalue = dataInfo.getMissingValue() #Set output nc data file
print 'Create output NC file: ' + outfn
ncfile = NetcdfFileWriter.createNew(NetcdfFileWriter.Version.netcdf3, outfn)
#Add dimensions
print 'Add dimensions...'
xDim = ncfile.addDimension(None, 'lon', xnum)
yDim = ncfile.addDimension(None, 'lat', ynum)
tDim = ncfile.addDimension(None, 'time', tnum) #Add global attributes
print 'Add global attributes...'
ncfile.addGroupAttribute(None, Attribute('Conventions', 'CF-1.6'))
ncfile.addGroupAttribute(None, Attribute('Title', 'Sand and dust storm forecasting'))
ncfile.addGroupAttribute(None, Attribute('Model', 'CUACE/Dust'))
ncfile.addGroupAttribute(None, Attribute('Center', 'WMO SDS-WAS Asian Center'))
ncfile.addGroupAttribute(None, Attribute('Agency', 'China Meteorological Administration')) #Add variables
xvar = ncfile.addVariable(None, 'lon', DataType.FLOAT, [xDim])
xvar.addAttribute(Attribute('units', 'degrees_east'))
xvar.addAttribute(Attribute('long_name', 'Longitude'))
xvar.addAttribute(Attribute('standard_name', 'longitude'))
xvar.addAttribute(Attribute('axis', 'X'))
yvar = ncfile.addVariable(None, 'lat', DataType.FLOAT, [yDim])
yvar.addAttribute(Attribute('units', 'degrees_north'))
yvar.addAttribute(Attribute('long_name', 'Latitude'))
yvar.addAttribute(Attribute('standard_name', 'latitude'))
yvar.addAttribute(Attribute('axis', 'Y'))
tvar = ncfile.addVariable(None, 'time', DataType.INT, [tDim])
tvar.addAttribute(Attribute('units', 'hours since 1900-01-01 00:00:0.0'))
tvar.addAttribute(Attribute('long_name', 'Time'))
tvar.addAttribute(Attribute('standart_name', 'time'))
tvar.addAttribute(Attribute('axis', 'T'))
#Data variables
vnames = ['load','con','dry','wet','aod']
varlist = []
var = ncfile.addVariable(None, 'LOAD_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Dust load'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'SCONC_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Surface dust concentration'))
var.addAttribute(Attribute('units', 'ug/m3'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'DDEPO_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', '3-hour accumulated dry deposition'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'WDEPO_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', '3-hour accumulated wet deposition'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'AOD550_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Dust optical depth at 550nm'))
var.addAttribute(Attribute('units', '-'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var) #Write nc file
ncfile.create()
#Write x,y,z,t variables
print 'Write x variable...'
shape = jarray.array([xnum], 'i')
data = Array.factory(DataType.FLOAT, shape)
for i in range(0,xnum):
data.set(i, X[i])
ncfile.write(xvar, data) print 'Write y variable...'
shape = jarray.array([ynum], 'i')
data = Array.factory(DataType.FLOAT, shape)
for i in range(0,ynum):
data.set(i, Y[i])
ncfile.write(yvar, data) print 'Write time variable...'
format = SimpleDateFormat('yyyy-MM-dd')
sdate = format.parse('1900-01-01')
tvalues = dataInfo.getTimeValues(sdate, 'hours')
shape = jarray.array([tnum], 'i')
data = Array.factory(DataType.INT, shape)
for i in range(0,tnum):
data.set(i, tvalues[i])
ncfile.write(tvar, data) #Write data variables
print 'Write data variable...'
for vname, var in zip(vnames, varlist):
for t in range(0, tnum):
print 'Time: ' + str(t + 1)
mdi.setTimeIndex(t)
gData = mdi.getGridData(vname)
ngData = gData.project(fromProjInfo, toProjInfo, X, Y, ResampleMethods.Bilinear)
origin = jarray.array([t, 0, 0], 'i')
ncfile.write(var, origin, NetCDFDataInfo.gridToArray3D(ngData)) #Close nc file
ncfile.flush()
ncfile.close() print 'Finished'

  

上面转换的netCDF文件绘制模式结果和地面天气现象观测叠加动画图的示例脚本:

# coding=utf-8
#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2015-3-13
# Purpose: Read CUACE/Dust netCDF data and MICAPS observation data to plot figures
# Note: Sample
#-----------------------------------------------------
print 'Loading classes...'
from org.meteoinfo.layout import MapLayout
from org.meteoinfo.data import GridData
from org.meteoinfo.data.meteodata import MeteoDataInfo, DrawMeteoData
from org.meteoinfo.legend import LegendScheme
from org.meteoinfo.shape import ShapeTypes
from org.meteoinfo.global.image import AnimatedGifEncoder
import os.path
import jarray
import datetime
import sys
from java.util import Date, Calendar, Locale
from java.text import SimpleDateFormat
from java.awt import Color #Set date
year = 2013
month = 3
day = 1
hour = 0
sdate = datetime.datetime(year, month, day, hour) #sdate = datetime.date.today()
#if len(sys.argv) >= 2:
# sdate = sdate - datetime.timedelta(days=int(sys.argv[1]))
# sdate = sdate + datetime.timedelta(days=1)
print sdate
dformat = SimpleDateFormat('HH dd MMM yyy', Locale.ENGLISH)
dformat1 = SimpleDateFormat('yyMMddHH')
cal = Calendar.getInstance() #Set model
#model = 'CUACE-DUST_CMA'
model = 'ADAM2_KMA' #Set directory
dataDir = 'D:/Working/2015/International/SDS_Asian_Region_Center/Model_Verification'
obsDir = 'U:/data/micaps/2014/plot'
obsDir = 'E:/MetData/micaps'
runDir = dataDir
outDir = os.path.join(dataDir, 'figure')
if not os.path.exists(outDir):
os.mkdir(outDir)
#Set input/output file names
infn = os.path.join(dataDir, 'WMO_SDS-WAS_Asian_Center_Model_Forecasting_' + model + '_' \
+ sdate.strftime('%Y-%m-%d') + '.nc')
projfn = os.path.join(runDir, 'sds_asian.mip') #Plot data
print 'Plot data...'
mapLayout = MapLayout()
mapLayout.loadProjectFile(projfn)
mf = mapLayout.getActiveMapFrame()
title = mapLayout.getTexts().get(2)
legend = mapLayout.getLegends()[0] #---- Set weather list - sand and dust storm
weathers = [6, 7, 8, 9, 30, 31, 32, 33, 34, 35]
#---- Set weather list - sand and dust storm and haze
#weathers = [5, 6, 7, 8, 9, 30, 31, 32, 33, 34, 35] #---- Create MeteoDataInfo object
mdi = MeteoDataInfo()
omdi = MeteoDataInfo() #---- Plot loop
mdi.openNetCDFData(infn)
lsfn = os.path.join(runDir,'dust_conc.lgs')
print 'Read data file: ' + infn
aLS = LegendScheme(ShapeTypes.Polygon)
aLS.importFromXMLFile(lsfn)
tnum = mdi.getDataInfo().getTimeNum()
#tnum = 3
s = 'SCONC_DUST'
giffn = os.path.join(outDir, 'V_' + s + '_' + model + '_' + sdate.strftime('%Y%m%d') + '--loop-.gif')
print giffn
encoder = AnimatedGifEncoder()
encoder.setRepeat(0)
encoder.setDelay(1000)
encoder.start(giffn)
sTime = mdi.getDataInfo().getTimes().get(0)
for t in range(1, tnum):
mdi.setTimeIndex(t)
aTime = mdi.getDataInfo().getTimes().get(t)
cal.setTime(aTime)
cal.add(Calendar.HOUR, 8)
bjTime = cal.getTime()
#---- Open observation weather data
obsfn = os.path.join(obsDir, dformat1.format(bjTime) + '.000')
print obsfn
if not os.path.exists(obsfn):
continue
omdi.openMICAPSData(obsfn)
wData = omdi.getStationData('WeatherNow')
weatherLayer = DrawMeteoData.createWeatherSymbolLayer(wData, weathers, 'Weather')
#for lb in weatherLayer.getLegendScheme().getLegendBreaks():
# lb.setColor(Color.red)
weatherLayer.setAvoidCollision(False)
mf.removeMeteoLayers()
mf.addLayer(weatherLayer)
#---- Get grid data and create a shaded layer
gData = mdi.getGridData(s)
aLayer = DrawMeteoData.createShadedLayer(gData, aLS, 'Forecasting_' + s, 'Data', True)
aLayer.setProjInfo(mdi.getProjectionInfo())
mf.addLayer(aLayer)
mf.moveLayer(aLayer, 0)
#---- Set title
title.setLabelText('Run: ' + dformat.format(sTime) + ' Valid: ' + dformat.format(aTime) \
+ '(H+' + str(t * 3) + ')')
#---- Set legend
legend.setLegendLayer(aLayer)
mapLayout.paintGraphics()
encoder.addFrame(mapLayout.getViewImage())
figurefn = os.path.join(outDir, 'V_' + model + '_' + s + '_' + dformat1.format(aTime) + '.png')
print 'Output figure: ' + figurefn
mapLayout.exportToPicture(figurefn) encoder.finish()
print 'Finished'

  

MeteoInfo脚本示例:GrADS to netCDF的更多相关文章

  1. MeteoInfo脚本示例:读取FY3A AOD HDF文件

    FY3A卫星有AOD产品数据,HDF格式,这里示例用MeteoInfo脚本程序读取和显示该类数据. 脚本程序如下: #----------------------------------------- ...

  2. MeteoInfoLab脚本示例:创建netCDF文件(合并文件)

    在MeteoInfoLab中增加了创建netCDF文件并写入数据的功能,这里利用合并多个netCDF文件为一个新的netCDF文件为例.1.创建一个可写入的netCDF文件对象(下面用ncfile表示 ...

  3. MeteoInfoLab脚本示例:Hamawari-8 netCDF data

    示例数据:ftp://ftp.bom.gov.au/anon/sample/catalogue/Satellite/IDE00220.201507140300.nc 该数据的分辨率很高(22000*2 ...

  4. MeteoInfoLab脚本示例:闪电位置图

    这个脚本示例读取文本格式的闪电数据,读出每条闪电记录的经纬度和强度,在地图上绘制出每个闪电的位置,并用符号和颜色区分强度正负.数据格式如下:0 2009-06-06 00:01:16.6195722 ...

  5. MeteoInfoLab脚本示例:FY-3C全球火点HDF数据

    FY-3C全球火点HDF数据包含一个FIRES二维变量,第一维是火点数,第二维是一些属性,其中第3.4列分别是火点的纬度和经度.下面的脚本示例读出所有火点经纬度并绘图.脚本程序: #Add data ...

  6. MeteoInfoLab脚本示例:Trajectory

    示例读取HYSPLIT模式输出的气团轨迹数据文件,生成轨迹图层,并显示轨迹各节点的气压图.脚本程序: f = addfile_hytraj('D:/MyProgram/Distribution/jav ...

  7. MeteoInfoLab脚本示例:站点数据绘制等值线

    站点数据绘制等值线需要首先将站点数据插值为格点数据,MeteoInfo中提供了反距离权法(IDW)和cressman两个方法,其中IDW方法可以有插值半径的选项.这里示例读取一个MICAPS第一类数据 ...

  8. MeteoInfoLab脚本示例:Maskout图形

    Maskout通常有两种类型:Maskout图形和Maskout数据.这里是Maskout图形的示例.需要用shaperead读取地图数据形成图层作为Maskout图层(这里是中国的行政区域china ...

  9. MeteoInfoLab脚本示例:MODIS AOD

    MODIS的气溶胶光学厚度(AOD)产品应用很广,数据可以在Giovanni上下载:http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html ...

随机推荐

  1. 求支付表中按id累积和最接近100的那条记录

    此例源自美团的一道SQL面试题 支付表结构: create table hy_payment( id number(4,0) primary key, pay number(3,0) not null ...

  2. 电子邮箱有哪些隐藏技能,读懂了效率提升N倍!

    很多人将邮箱作为常见的通讯工具,然而,大部分职场人只了解其五分之一的功能.电子邮箱还有很多隐藏技能,身为商务精英的你,必须往下看看哦!今天跟随TOM邮箱小编导,来挖掘下邮箱的潜藏技能吧~ 作为经常外出 ...

  3. C#封装YOLOv4算法进行目标检测

    C#封装YOLOv4算法进行目标检测 概述 官网:https://pjreddie.com/darknet/ Darknet:[Github] C#封装代码:[Github] YOLO: 是实现实时物 ...

  4. adb连接手机

    1. 通过wifi, 利用adb来连接手机. 在pc的cmd中输入命令: adb connect 192.168.1.100 其中adb就是手机的ip. 如果连接成功, 就可以进入android的sh ...

  5. %s 表示格式化一个对象为字符

    比如: name=“good” print('%s'%name)会打印出good print('%3s'%name)  会打印出good,当%和s之间的数字,小于字符串长度时,实际打印出字符串的长度 ...

  6. Jenkins+Git+Gitlab+Ansible实现持续集成自动化部署动态网站(7)

    项目前言 在上一篇博客<Jenkins+Git+Gitlab+Ansible实现持续化集成一键部署静态网站(一)–技术流ken>中已经详细讲解了如何使用这四个工具来持续集成自动化部署一个静 ...

  7. Java内部类使用场景和作用

    一.Java内部类的分类 Java内部类一般包括四种:成员内部类.局部内部类.匿名内部类和静态内部类 大多数业务需求,不使用内部类都可以解决,那为什么Java还要设计内部类呢. 二.内部类的使用场景 ...

  8. hystrix动态修改参数

    Hystrix 从入门到深入——运行时修改动态配置 /** * * @author zhangshuo * */ @Component public class DynamicConfigSource ...

  9. spring mvc(5) HandlerAdapter

    前面我们讲到了通过HandlerMapping可以获得不同类型的处理器,可以是Controller.HttpRequestHandler.Servlet.HandlerMethod甚至是我们自定义的处 ...

  10. 1.Concurrent概述