MeteoInfo脚本示例:GrADS to netCDF
这里给出一个将GrADS数据文件转为netCDF数据文件的脚本示例程序,其它格式数据转netCDF可以参考:
#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2015-3-12
# Purpose: Convert CUACE grads data to netCDF (CUACE/Dust)
# Note: Sample
#-----------------------------------------------------
print 'Loading classes...'
from org.meteoinfo.data import GridData
from org.meteoinfo.data import DataMath
from org.meteoinfo.data.meteodata import MeteoDataInfo
from org.meteoinfo.geoprocess.analysis import ResampleMethods
from org.meteoinfo.data.meteodata.netcdf import NetCDFDataInfo
from org.meteoinfo.projection import ProjectionInfo
from org.meteoinfo.projection import ProjectionNames
from org.meteoinfo.projection import KnownCoordinateSystems
from ucar.nc2 import NetcdfFileWriter
from ucar.nc2 import Attribute
from ucar.ma2 import DataType
from ucar.ma2 import Array
import os.path
import jarray
import datetime
from java.util import Date
from java.text import SimpleDateFormat #Set date
year = 2014
month = 4
day = 23
hour = 0
sdate = datetime.datetime(year, month, day, hour)
print sdate
#Set directory
dataDir = 'U:/data/cuace_dust/dust_example/2014_case'
outDir = dataDir
infn = os.path.join(dataDir, 'dust_post_'+ sdate.strftime('%Y%m%d%H') + '.ctl')
outfn = os.path.join(dataDir, 'WMO_SDS-WAS_Asian_Center_Model_Forecasting_CUACE-Dust_CMA_' \
+ sdate.strftime('%Y-%m-%d') + '.nc')
#Set output X/Y coordinates and projection
toProjInfo = KnownCoordinateSystems.geographic.world.WGS1984
sx = 70.0
xnum = 161
sy = 20
ynum = 71
delta = 0.5
xlist = []
ylist = []
for i in range(0, xnum):
xlist.append(sx + delta * i)
for i in range(0, ynum):
ylist.append(sy + delta * i)
X = jarray.array(xlist, 'd')
Y = jarray.array(ylist, 'd') #Read GrADS data file
print 'Open GrADS data file...'
mdi = MeteoDataInfo()
mdi.openGrADSData(infn)
dataInfo = mdi.getDataInfo()
dataInfo.setBigEndian(True)
fromProjInfo = mdi.getProjectionInfo()
tnum = dataInfo.getTimeNum()
mvalue = dataInfo.getMissingValue() #Set output nc data file
print 'Create output NC file: ' + outfn
ncfile = NetcdfFileWriter.createNew(NetcdfFileWriter.Version.netcdf3, outfn)
#Add dimensions
print 'Add dimensions...'
xDim = ncfile.addDimension(None, 'lon', xnum)
yDim = ncfile.addDimension(None, 'lat', ynum)
tDim = ncfile.addDimension(None, 'time', tnum) #Add global attributes
print 'Add global attributes...'
ncfile.addGroupAttribute(None, Attribute('Conventions', 'CF-1.6'))
ncfile.addGroupAttribute(None, Attribute('Title', 'Sand and dust storm forecasting'))
ncfile.addGroupAttribute(None, Attribute('Model', 'CUACE/Dust'))
ncfile.addGroupAttribute(None, Attribute('Center', 'WMO SDS-WAS Asian Center'))
ncfile.addGroupAttribute(None, Attribute('Agency', 'China Meteorological Administration')) #Add variables
xvar = ncfile.addVariable(None, 'lon', DataType.FLOAT, [xDim])
xvar.addAttribute(Attribute('units', 'degrees_east'))
xvar.addAttribute(Attribute('long_name', 'Longitude'))
xvar.addAttribute(Attribute('standard_name', 'longitude'))
xvar.addAttribute(Attribute('axis', 'X'))
yvar = ncfile.addVariable(None, 'lat', DataType.FLOAT, [yDim])
yvar.addAttribute(Attribute('units', 'degrees_north'))
yvar.addAttribute(Attribute('long_name', 'Latitude'))
yvar.addAttribute(Attribute('standard_name', 'latitude'))
yvar.addAttribute(Attribute('axis', 'Y'))
tvar = ncfile.addVariable(None, 'time', DataType.INT, [tDim])
tvar.addAttribute(Attribute('units', 'hours since 1900-01-01 00:00:0.0'))
tvar.addAttribute(Attribute('long_name', 'Time'))
tvar.addAttribute(Attribute('standart_name', 'time'))
tvar.addAttribute(Attribute('axis', 'T'))
#Data variables
vnames = ['load','con','dry','wet','aod']
varlist = []
var = ncfile.addVariable(None, 'LOAD_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Dust load'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'SCONC_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Surface dust concentration'))
var.addAttribute(Attribute('units', 'ug/m3'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'DDEPO_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', '3-hour accumulated dry deposition'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'WDEPO_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', '3-hour accumulated wet deposition'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'AOD550_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Dust optical depth at 550nm'))
var.addAttribute(Attribute('units', '-'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var) #Write nc file
ncfile.create()
#Write x,y,z,t variables
print 'Write x variable...'
shape = jarray.array([xnum], 'i')
data = Array.factory(DataType.FLOAT, shape)
for i in range(0,xnum):
data.set(i, X[i])
ncfile.write(xvar, data) print 'Write y variable...'
shape = jarray.array([ynum], 'i')
data = Array.factory(DataType.FLOAT, shape)
for i in range(0,ynum):
data.set(i, Y[i])
ncfile.write(yvar, data) print 'Write time variable...'
format = SimpleDateFormat('yyyy-MM-dd')
sdate = format.parse('1900-01-01')
tvalues = dataInfo.getTimeValues(sdate, 'hours')
shape = jarray.array([tnum], 'i')
data = Array.factory(DataType.INT, shape)
for i in range(0,tnum):
data.set(i, tvalues[i])
ncfile.write(tvar, data) #Write data variables
print 'Write data variable...'
for vname, var in zip(vnames, varlist):
for t in range(0, tnum):
print 'Time: ' + str(t + 1)
mdi.setTimeIndex(t)
gData = mdi.getGridData(vname)
ngData = gData.project(fromProjInfo, toProjInfo, X, Y, ResampleMethods.Bilinear)
origin = jarray.array([t, 0, 0], 'i')
ncfile.write(var, origin, NetCDFDataInfo.gridToArray3D(ngData)) #Close nc file
ncfile.flush()
ncfile.close() print 'Finished'
上面转换的netCDF文件绘制模式结果和地面天气现象观测叠加动画图的示例脚本:
# coding=utf-8
#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2015-3-13
# Purpose: Read CUACE/Dust netCDF data and MICAPS observation data to plot figures
# Note: Sample
#-----------------------------------------------------
print 'Loading classes...'
from org.meteoinfo.layout import MapLayout
from org.meteoinfo.data import GridData
from org.meteoinfo.data.meteodata import MeteoDataInfo, DrawMeteoData
from org.meteoinfo.legend import LegendScheme
from org.meteoinfo.shape import ShapeTypes
from org.meteoinfo.global.image import AnimatedGifEncoder
import os.path
import jarray
import datetime
import sys
from java.util import Date, Calendar, Locale
from java.text import SimpleDateFormat
from java.awt import Color #Set date
year = 2013
month = 3
day = 1
hour = 0
sdate = datetime.datetime(year, month, day, hour) #sdate = datetime.date.today()
#if len(sys.argv) >= 2:
# sdate = sdate - datetime.timedelta(days=int(sys.argv[1]))
# sdate = sdate + datetime.timedelta(days=1)
print sdate
dformat = SimpleDateFormat('HH dd MMM yyy', Locale.ENGLISH)
dformat1 = SimpleDateFormat('yyMMddHH')
cal = Calendar.getInstance() #Set model
#model = 'CUACE-DUST_CMA'
model = 'ADAM2_KMA' #Set directory
dataDir = 'D:/Working/2015/International/SDS_Asian_Region_Center/Model_Verification'
obsDir = 'U:/data/micaps/2014/plot'
obsDir = 'E:/MetData/micaps'
runDir = dataDir
outDir = os.path.join(dataDir, 'figure')
if not os.path.exists(outDir):
os.mkdir(outDir)
#Set input/output file names
infn = os.path.join(dataDir, 'WMO_SDS-WAS_Asian_Center_Model_Forecasting_' + model + '_' \
+ sdate.strftime('%Y-%m-%d') + '.nc')
projfn = os.path.join(runDir, 'sds_asian.mip') #Plot data
print 'Plot data...'
mapLayout = MapLayout()
mapLayout.loadProjectFile(projfn)
mf = mapLayout.getActiveMapFrame()
title = mapLayout.getTexts().get(2)
legend = mapLayout.getLegends()[0] #---- Set weather list - sand and dust storm
weathers = [6, 7, 8, 9, 30, 31, 32, 33, 34, 35]
#---- Set weather list - sand and dust storm and haze
#weathers = [5, 6, 7, 8, 9, 30, 31, 32, 33, 34, 35] #---- Create MeteoDataInfo object
mdi = MeteoDataInfo()
omdi = MeteoDataInfo() #---- Plot loop
mdi.openNetCDFData(infn)
lsfn = os.path.join(runDir,'dust_conc.lgs')
print 'Read data file: ' + infn
aLS = LegendScheme(ShapeTypes.Polygon)
aLS.importFromXMLFile(lsfn)
tnum = mdi.getDataInfo().getTimeNum()
#tnum = 3
s = 'SCONC_DUST'
giffn = os.path.join(outDir, 'V_' + s + '_' + model + '_' + sdate.strftime('%Y%m%d') + '--loop-.gif')
print giffn
encoder = AnimatedGifEncoder()
encoder.setRepeat(0)
encoder.setDelay(1000)
encoder.start(giffn)
sTime = mdi.getDataInfo().getTimes().get(0)
for t in range(1, tnum):
mdi.setTimeIndex(t)
aTime = mdi.getDataInfo().getTimes().get(t)
cal.setTime(aTime)
cal.add(Calendar.HOUR, 8)
bjTime = cal.getTime()
#---- Open observation weather data
obsfn = os.path.join(obsDir, dformat1.format(bjTime) + '.000')
print obsfn
if not os.path.exists(obsfn):
continue
omdi.openMICAPSData(obsfn)
wData = omdi.getStationData('WeatherNow')
weatherLayer = DrawMeteoData.createWeatherSymbolLayer(wData, weathers, 'Weather')
#for lb in weatherLayer.getLegendScheme().getLegendBreaks():
# lb.setColor(Color.red)
weatherLayer.setAvoidCollision(False)
mf.removeMeteoLayers()
mf.addLayer(weatherLayer)
#---- Get grid data and create a shaded layer
gData = mdi.getGridData(s)
aLayer = DrawMeteoData.createShadedLayer(gData, aLS, 'Forecasting_' + s, 'Data', True)
aLayer.setProjInfo(mdi.getProjectionInfo())
mf.addLayer(aLayer)
mf.moveLayer(aLayer, 0)
#---- Set title
title.setLabelText('Run: ' + dformat.format(sTime) + ' Valid: ' + dformat.format(aTime) \
+ '(H+' + str(t * 3) + ')')
#---- Set legend
legend.setLegendLayer(aLayer)
mapLayout.paintGraphics()
encoder.addFrame(mapLayout.getViewImage())
figurefn = os.path.join(outDir, 'V_' + model + '_' + s + '_' + dformat1.format(aTime) + '.png')
print 'Output figure: ' + figurefn
mapLayout.exportToPicture(figurefn) encoder.finish()
print 'Finished'

MeteoInfo脚本示例:GrADS to netCDF的更多相关文章
- MeteoInfo脚本示例:读取FY3A AOD HDF文件
FY3A卫星有AOD产品数据,HDF格式,这里示例用MeteoInfo脚本程序读取和显示该类数据. 脚本程序如下: #----------------------------------------- ...
- MeteoInfoLab脚本示例:创建netCDF文件(合并文件)
在MeteoInfoLab中增加了创建netCDF文件并写入数据的功能,这里利用合并多个netCDF文件为一个新的netCDF文件为例.1.创建一个可写入的netCDF文件对象(下面用ncfile表示 ...
- MeteoInfoLab脚本示例:Hamawari-8 netCDF data
示例数据:ftp://ftp.bom.gov.au/anon/sample/catalogue/Satellite/IDE00220.201507140300.nc 该数据的分辨率很高(22000*2 ...
- MeteoInfoLab脚本示例:闪电位置图
这个脚本示例读取文本格式的闪电数据,读出每条闪电记录的经纬度和强度,在地图上绘制出每个闪电的位置,并用符号和颜色区分强度正负.数据格式如下:0 2009-06-06 00:01:16.6195722 ...
- MeteoInfoLab脚本示例:FY-3C全球火点HDF数据
FY-3C全球火点HDF数据包含一个FIRES二维变量,第一维是火点数,第二维是一些属性,其中第3.4列分别是火点的纬度和经度.下面的脚本示例读出所有火点经纬度并绘图.脚本程序: #Add data ...
- MeteoInfoLab脚本示例:Trajectory
示例读取HYSPLIT模式输出的气团轨迹数据文件,生成轨迹图层,并显示轨迹各节点的气压图.脚本程序: f = addfile_hytraj('D:/MyProgram/Distribution/jav ...
- MeteoInfoLab脚本示例:站点数据绘制等值线
站点数据绘制等值线需要首先将站点数据插值为格点数据,MeteoInfo中提供了反距离权法(IDW)和cressman两个方法,其中IDW方法可以有插值半径的选项.这里示例读取一个MICAPS第一类数据 ...
- MeteoInfoLab脚本示例:Maskout图形
Maskout通常有两种类型:Maskout图形和Maskout数据.这里是Maskout图形的示例.需要用shaperead读取地图数据形成图层作为Maskout图层(这里是中国的行政区域china ...
- MeteoInfoLab脚本示例:MODIS AOD
MODIS的气溶胶光学厚度(AOD)产品应用很广,数据可以在Giovanni上下载:http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html ...
随机推荐
- BasicInterpreter1.00 运行简单Basic脚本 打印变量及字符串
源码下载:https://files.cnblogs.com/files/heyang78/basicInterpreter-20200529-1.rar 脚本: count= print(count ...
- axure rp extension for chrome怎么用
1)打开文件(原型图)的resources文件夹>chrome文件夹>将文件axure-chrome-extension.crx拉至谷歌浏览器的扩展程序页面,点击确定添加 2)提示出错时, ...
- 3.AVPacket使用
1.使用注意 AVPacket需要用户通过av_packet_allc()创建好空间后.才能供给fimpeg进行获取解码前帧数据,由于解码前帧数据大小是不固定的(比如I帧数据量最大)所以ffmpeg会 ...
- 9.下载ffmpeg、使QT支持同时编译32位和64位
1.FFMPEG下载 进入http://ffmpeg.org/download.html,如果下载源码,则在右下方: 如果在linux中,直接输入git clone https://git.ffmpe ...
- Priest John's Busiest Day(POJ 3683)
原题如下: Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12162 ...
- Robotframework自动化4-基础关键字介绍1
前言 上一节已经介绍了APP的启动,那我们就会看到我们引用了一些关键字,对于AppiumLibrary都有哪些常用的关键呢,这一节主要介绍这一部分. AppiumLibrary 常用关键字介绍 1.关 ...
- [Java并发编程之美]第2章 synchroized关键字
###synchronized关键字 synchronized块是Java提供的一种原子性内置锁,每个对象都可以把它当同步锁来用.线程在进入synchronized块钱会自动获取内部锁,这时候其他线程 ...
- 深入分析Linux内核链表
1. 普通单链表 2. 内核链表 上图是本人从其他博客盗来的,差点被糊弄过去. 下图是本人自己用KeyNote画的(唉!!画图真的是让人心好累啊!!). 差异是不是很明显啊?! Read The Fu ...
- JDK15真的来了,一起来看看它的新特性
目录 简介 JDK15的新特性 JEP 385 Deprecate RMI Activation for Removal JEP 371 Hidden Classes JEP 339 Edwards- ...
- Docker日志管理–docker部署安装ELK (十一)
Docker logs 对于一个运行的容器,Docker 会将日志发送到 容器的 标准输出设备(STDOUT)和标准错误设备(STDERR),STDOUT 和 STDERR 实际上就是容器的控制台终端 ...