这里给出一个将GrADS数据文件转为netCDF数据文件的脚本示例程序,其它格式数据转netCDF可以参考:

#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2015-3-12
# Purpose: Convert CUACE grads data to netCDF (CUACE/Dust)
# Note: Sample
#-----------------------------------------------------
print 'Loading classes...'
from org.meteoinfo.data import GridData
from org.meteoinfo.data import DataMath
from org.meteoinfo.data.meteodata import MeteoDataInfo
from org.meteoinfo.geoprocess.analysis import ResampleMethods
from org.meteoinfo.data.meteodata.netcdf import NetCDFDataInfo
from org.meteoinfo.projection import ProjectionInfo
from org.meteoinfo.projection import ProjectionNames
from org.meteoinfo.projection import KnownCoordinateSystems
from ucar.nc2 import NetcdfFileWriter
from ucar.nc2 import Attribute
from ucar.ma2 import DataType
from ucar.ma2 import Array
import os.path
import jarray
import datetime
from java.util import Date
from java.text import SimpleDateFormat #Set date
year = 2014
month = 4
day = 23
hour = 0
sdate = datetime.datetime(year, month, day, hour)
print sdate
#Set directory
dataDir = 'U:/data/cuace_dust/dust_example/2014_case'
outDir = dataDir
infn = os.path.join(dataDir, 'dust_post_'+ sdate.strftime('%Y%m%d%H') + '.ctl')
outfn = os.path.join(dataDir, 'WMO_SDS-WAS_Asian_Center_Model_Forecasting_CUACE-Dust_CMA_' \
+ sdate.strftime('%Y-%m-%d') + '.nc')
#Set output X/Y coordinates and projection
toProjInfo = KnownCoordinateSystems.geographic.world.WGS1984
sx = 70.0
xnum = 161
sy = 20
ynum = 71
delta = 0.5
xlist = []
ylist = []
for i in range(0, xnum):
xlist.append(sx + delta * i)
for i in range(0, ynum):
ylist.append(sy + delta * i)
X = jarray.array(xlist, 'd')
Y = jarray.array(ylist, 'd') #Read GrADS data file
print 'Open GrADS data file...'
mdi = MeteoDataInfo()
mdi.openGrADSData(infn)
dataInfo = mdi.getDataInfo()
dataInfo.setBigEndian(True)
fromProjInfo = mdi.getProjectionInfo()
tnum = dataInfo.getTimeNum()
mvalue = dataInfo.getMissingValue() #Set output nc data file
print 'Create output NC file: ' + outfn
ncfile = NetcdfFileWriter.createNew(NetcdfFileWriter.Version.netcdf3, outfn)
#Add dimensions
print 'Add dimensions...'
xDim = ncfile.addDimension(None, 'lon', xnum)
yDim = ncfile.addDimension(None, 'lat', ynum)
tDim = ncfile.addDimension(None, 'time', tnum) #Add global attributes
print 'Add global attributes...'
ncfile.addGroupAttribute(None, Attribute('Conventions', 'CF-1.6'))
ncfile.addGroupAttribute(None, Attribute('Title', 'Sand and dust storm forecasting'))
ncfile.addGroupAttribute(None, Attribute('Model', 'CUACE/Dust'))
ncfile.addGroupAttribute(None, Attribute('Center', 'WMO SDS-WAS Asian Center'))
ncfile.addGroupAttribute(None, Attribute('Agency', 'China Meteorological Administration')) #Add variables
xvar = ncfile.addVariable(None, 'lon', DataType.FLOAT, [xDim])
xvar.addAttribute(Attribute('units', 'degrees_east'))
xvar.addAttribute(Attribute('long_name', 'Longitude'))
xvar.addAttribute(Attribute('standard_name', 'longitude'))
xvar.addAttribute(Attribute('axis', 'X'))
yvar = ncfile.addVariable(None, 'lat', DataType.FLOAT, [yDim])
yvar.addAttribute(Attribute('units', 'degrees_north'))
yvar.addAttribute(Attribute('long_name', 'Latitude'))
yvar.addAttribute(Attribute('standard_name', 'latitude'))
yvar.addAttribute(Attribute('axis', 'Y'))
tvar = ncfile.addVariable(None, 'time', DataType.INT, [tDim])
tvar.addAttribute(Attribute('units', 'hours since 1900-01-01 00:00:0.0'))
tvar.addAttribute(Attribute('long_name', 'Time'))
tvar.addAttribute(Attribute('standart_name', 'time'))
tvar.addAttribute(Attribute('axis', 'T'))
#Data variables
vnames = ['load','con','dry','wet','aod']
varlist = []
var = ncfile.addVariable(None, 'LOAD_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Dust load'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'SCONC_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Surface dust concentration'))
var.addAttribute(Attribute('units', 'ug/m3'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'DDEPO_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', '3-hour accumulated dry deposition'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'WDEPO_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', '3-hour accumulated wet deposition'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'AOD550_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Dust optical depth at 550nm'))
var.addAttribute(Attribute('units', '-'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var) #Write nc file
ncfile.create()
#Write x,y,z,t variables
print 'Write x variable...'
shape = jarray.array([xnum], 'i')
data = Array.factory(DataType.FLOAT, shape)
for i in range(0,xnum):
data.set(i, X[i])
ncfile.write(xvar, data) print 'Write y variable...'
shape = jarray.array([ynum], 'i')
data = Array.factory(DataType.FLOAT, shape)
for i in range(0,ynum):
data.set(i, Y[i])
ncfile.write(yvar, data) print 'Write time variable...'
format = SimpleDateFormat('yyyy-MM-dd')
sdate = format.parse('1900-01-01')
tvalues = dataInfo.getTimeValues(sdate, 'hours')
shape = jarray.array([tnum], 'i')
data = Array.factory(DataType.INT, shape)
for i in range(0,tnum):
data.set(i, tvalues[i])
ncfile.write(tvar, data) #Write data variables
print 'Write data variable...'
for vname, var in zip(vnames, varlist):
for t in range(0, tnum):
print 'Time: ' + str(t + 1)
mdi.setTimeIndex(t)
gData = mdi.getGridData(vname)
ngData = gData.project(fromProjInfo, toProjInfo, X, Y, ResampleMethods.Bilinear)
origin = jarray.array([t, 0, 0], 'i')
ncfile.write(var, origin, NetCDFDataInfo.gridToArray3D(ngData)) #Close nc file
ncfile.flush()
ncfile.close() print 'Finished'

  

上面转换的netCDF文件绘制模式结果和地面天气现象观测叠加动画图的示例脚本:

# coding=utf-8
#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2015-3-13
# Purpose: Read CUACE/Dust netCDF data and MICAPS observation data to plot figures
# Note: Sample
#-----------------------------------------------------
print 'Loading classes...'
from org.meteoinfo.layout import MapLayout
from org.meteoinfo.data import GridData
from org.meteoinfo.data.meteodata import MeteoDataInfo, DrawMeteoData
from org.meteoinfo.legend import LegendScheme
from org.meteoinfo.shape import ShapeTypes
from org.meteoinfo.global.image import AnimatedGifEncoder
import os.path
import jarray
import datetime
import sys
from java.util import Date, Calendar, Locale
from java.text import SimpleDateFormat
from java.awt import Color #Set date
year = 2013
month = 3
day = 1
hour = 0
sdate = datetime.datetime(year, month, day, hour) #sdate = datetime.date.today()
#if len(sys.argv) >= 2:
# sdate = sdate - datetime.timedelta(days=int(sys.argv[1]))
# sdate = sdate + datetime.timedelta(days=1)
print sdate
dformat = SimpleDateFormat('HH dd MMM yyy', Locale.ENGLISH)
dformat1 = SimpleDateFormat('yyMMddHH')
cal = Calendar.getInstance() #Set model
#model = 'CUACE-DUST_CMA'
model = 'ADAM2_KMA' #Set directory
dataDir = 'D:/Working/2015/International/SDS_Asian_Region_Center/Model_Verification'
obsDir = 'U:/data/micaps/2014/plot'
obsDir = 'E:/MetData/micaps'
runDir = dataDir
outDir = os.path.join(dataDir, 'figure')
if not os.path.exists(outDir):
os.mkdir(outDir)
#Set input/output file names
infn = os.path.join(dataDir, 'WMO_SDS-WAS_Asian_Center_Model_Forecasting_' + model + '_' \
+ sdate.strftime('%Y-%m-%d') + '.nc')
projfn = os.path.join(runDir, 'sds_asian.mip') #Plot data
print 'Plot data...'
mapLayout = MapLayout()
mapLayout.loadProjectFile(projfn)
mf = mapLayout.getActiveMapFrame()
title = mapLayout.getTexts().get(2)
legend = mapLayout.getLegends()[0] #---- Set weather list - sand and dust storm
weathers = [6, 7, 8, 9, 30, 31, 32, 33, 34, 35]
#---- Set weather list - sand and dust storm and haze
#weathers = [5, 6, 7, 8, 9, 30, 31, 32, 33, 34, 35] #---- Create MeteoDataInfo object
mdi = MeteoDataInfo()
omdi = MeteoDataInfo() #---- Plot loop
mdi.openNetCDFData(infn)
lsfn = os.path.join(runDir,'dust_conc.lgs')
print 'Read data file: ' + infn
aLS = LegendScheme(ShapeTypes.Polygon)
aLS.importFromXMLFile(lsfn)
tnum = mdi.getDataInfo().getTimeNum()
#tnum = 3
s = 'SCONC_DUST'
giffn = os.path.join(outDir, 'V_' + s + '_' + model + '_' + sdate.strftime('%Y%m%d') + '--loop-.gif')
print giffn
encoder = AnimatedGifEncoder()
encoder.setRepeat(0)
encoder.setDelay(1000)
encoder.start(giffn)
sTime = mdi.getDataInfo().getTimes().get(0)
for t in range(1, tnum):
mdi.setTimeIndex(t)
aTime = mdi.getDataInfo().getTimes().get(t)
cal.setTime(aTime)
cal.add(Calendar.HOUR, 8)
bjTime = cal.getTime()
#---- Open observation weather data
obsfn = os.path.join(obsDir, dformat1.format(bjTime) + '.000')
print obsfn
if not os.path.exists(obsfn):
continue
omdi.openMICAPSData(obsfn)
wData = omdi.getStationData('WeatherNow')
weatherLayer = DrawMeteoData.createWeatherSymbolLayer(wData, weathers, 'Weather')
#for lb in weatherLayer.getLegendScheme().getLegendBreaks():
# lb.setColor(Color.red)
weatherLayer.setAvoidCollision(False)
mf.removeMeteoLayers()
mf.addLayer(weatherLayer)
#---- Get grid data and create a shaded layer
gData = mdi.getGridData(s)
aLayer = DrawMeteoData.createShadedLayer(gData, aLS, 'Forecasting_' + s, 'Data', True)
aLayer.setProjInfo(mdi.getProjectionInfo())
mf.addLayer(aLayer)
mf.moveLayer(aLayer, 0)
#---- Set title
title.setLabelText('Run: ' + dformat.format(sTime) + ' Valid: ' + dformat.format(aTime) \
+ '(H+' + str(t * 3) + ')')
#---- Set legend
legend.setLegendLayer(aLayer)
mapLayout.paintGraphics()
encoder.addFrame(mapLayout.getViewImage())
figurefn = os.path.join(outDir, 'V_' + model + '_' + s + '_' + dformat1.format(aTime) + '.png')
print 'Output figure: ' + figurefn
mapLayout.exportToPicture(figurefn) encoder.finish()
print 'Finished'

  

MeteoInfo脚本示例:GrADS to netCDF的更多相关文章

  1. MeteoInfo脚本示例:读取FY3A AOD HDF文件

    FY3A卫星有AOD产品数据,HDF格式,这里示例用MeteoInfo脚本程序读取和显示该类数据. 脚本程序如下: #----------------------------------------- ...

  2. MeteoInfoLab脚本示例:创建netCDF文件(合并文件)

    在MeteoInfoLab中增加了创建netCDF文件并写入数据的功能,这里利用合并多个netCDF文件为一个新的netCDF文件为例.1.创建一个可写入的netCDF文件对象(下面用ncfile表示 ...

  3. MeteoInfoLab脚本示例:Hamawari-8 netCDF data

    示例数据:ftp://ftp.bom.gov.au/anon/sample/catalogue/Satellite/IDE00220.201507140300.nc 该数据的分辨率很高(22000*2 ...

  4. MeteoInfoLab脚本示例:闪电位置图

    这个脚本示例读取文本格式的闪电数据,读出每条闪电记录的经纬度和强度,在地图上绘制出每个闪电的位置,并用符号和颜色区分强度正负.数据格式如下:0 2009-06-06 00:01:16.6195722 ...

  5. MeteoInfoLab脚本示例:FY-3C全球火点HDF数据

    FY-3C全球火点HDF数据包含一个FIRES二维变量,第一维是火点数,第二维是一些属性,其中第3.4列分别是火点的纬度和经度.下面的脚本示例读出所有火点经纬度并绘图.脚本程序: #Add data ...

  6. MeteoInfoLab脚本示例:Trajectory

    示例读取HYSPLIT模式输出的气团轨迹数据文件,生成轨迹图层,并显示轨迹各节点的气压图.脚本程序: f = addfile_hytraj('D:/MyProgram/Distribution/jav ...

  7. MeteoInfoLab脚本示例:站点数据绘制等值线

    站点数据绘制等值线需要首先将站点数据插值为格点数据,MeteoInfo中提供了反距离权法(IDW)和cressman两个方法,其中IDW方法可以有插值半径的选项.这里示例读取一个MICAPS第一类数据 ...

  8. MeteoInfoLab脚本示例:Maskout图形

    Maskout通常有两种类型:Maskout图形和Maskout数据.这里是Maskout图形的示例.需要用shaperead读取地图数据形成图层作为Maskout图层(这里是中国的行政区域china ...

  9. MeteoInfoLab脚本示例:MODIS AOD

    MODIS的气溶胶光学厚度(AOD)产品应用很广,数据可以在Giovanni上下载:http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html ...

随机推荐

  1. leetcode刷题-62不同路径

    题目 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 问总 ...

  2. Springboot中WebMvcConfigurer接口详解

    Springboot 使用越来越多,企业的基本框架,到Springcloud分布式,可以说无论面试还是平常技术学习,一说到spring几乎就就代替了Java,可以说spring,springboot的 ...

  3. jmeter压测以及用Badboy录脚本

    一.压测时的基本配置: 1.设置线程数.延迟几秒.循环次数打勾表示一直去循环.调度器打勾可以填写持续时间.启动时间等 线程数:就是并发的用户数   N Ramp-Up Period(in second ...

  4. Java基础之HashMap原理分析(put、get、resize)

    在分析HashMap之前,先看下图,理解一下HashMap的结构 我手画了一个图,简单描述一下HashMap的结构,数组+链表构成一个HashMap,当我们调用put方法的时候增加一个新的 key-v ...

  5. Java成神之路:第一帖---- Vue的组件属性components用法

    Vue的组件属性:components 使用场景 一般在项目的使用过程中,某个需要多次使用的模块,会将整个模块抽取出来,写一个组件,供给其他页面进行调用或者是在一个页面中,多次使用到一个重复的代码样式 ...

  6. Docker实战(6): 导出docker镜像离线包

    前言 离线环境安装Docker 镜像,我已知两种情况,以下操作我将采用在可访问外网的机器上通过镜像迁移的方式来给离线环境安装. 环境:服务器node1可访问外网.服务器node2无法访问外网 两台机器 ...

  7. docker的使用场景和背景了解

    Docker的使用场景以及优缺点 https://blog.csdn.net/zhangdekui/article/details/81541519 浅析Docker容器的应用场景 https://w ...

  8. DRF序列化、认证、跨域问题

    初级 #models.py from django.db import models class User(models.Model): user = models.CharField(max_len ...

  9. Spring的IOC控制反转和依赖注入-重点-spring核心之一

    IoC:Inverse of Control(控制反转): 读作"反转控制",更好理解,不是什么技术,而是一种设计思想,好比于MVC.就是将原本在程序中手动创建对象的控制权,交由S ...

  10. 前端性能测试工具之PageSpeed Insights

    谷歌开发的一个免费的网页分析工具,在地址栏中输入被分析的网站 url 地址,点击分析 地址:https://developers.google.cn/speed/pagespeed/insights/ ...