MeteoInfo脚本示例:GrADS to netCDF
这里给出一个将GrADS数据文件转为netCDF数据文件的脚本示例程序,其它格式数据转netCDF可以参考:
#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2015-3-12
# Purpose: Convert CUACE grads data to netCDF (CUACE/Dust)
# Note: Sample
#-----------------------------------------------------
print 'Loading classes...'
from org.meteoinfo.data import GridData
from org.meteoinfo.data import DataMath
from org.meteoinfo.data.meteodata import MeteoDataInfo
from org.meteoinfo.geoprocess.analysis import ResampleMethods
from org.meteoinfo.data.meteodata.netcdf import NetCDFDataInfo
from org.meteoinfo.projection import ProjectionInfo
from org.meteoinfo.projection import ProjectionNames
from org.meteoinfo.projection import KnownCoordinateSystems
from ucar.nc2 import NetcdfFileWriter
from ucar.nc2 import Attribute
from ucar.ma2 import DataType
from ucar.ma2 import Array
import os.path
import jarray
import datetime
from java.util import Date
from java.text import SimpleDateFormat #Set date
year = 2014
month = 4
day = 23
hour = 0
sdate = datetime.datetime(year, month, day, hour)
print sdate
#Set directory
dataDir = 'U:/data/cuace_dust/dust_example/2014_case'
outDir = dataDir
infn = os.path.join(dataDir, 'dust_post_'+ sdate.strftime('%Y%m%d%H') + '.ctl')
outfn = os.path.join(dataDir, 'WMO_SDS-WAS_Asian_Center_Model_Forecasting_CUACE-Dust_CMA_' \
+ sdate.strftime('%Y-%m-%d') + '.nc')
#Set output X/Y coordinates and projection
toProjInfo = KnownCoordinateSystems.geographic.world.WGS1984
sx = 70.0
xnum = 161
sy = 20
ynum = 71
delta = 0.5
xlist = []
ylist = []
for i in range(0, xnum):
xlist.append(sx + delta * i)
for i in range(0, ynum):
ylist.append(sy + delta * i)
X = jarray.array(xlist, 'd')
Y = jarray.array(ylist, 'd') #Read GrADS data file
print 'Open GrADS data file...'
mdi = MeteoDataInfo()
mdi.openGrADSData(infn)
dataInfo = mdi.getDataInfo()
dataInfo.setBigEndian(True)
fromProjInfo = mdi.getProjectionInfo()
tnum = dataInfo.getTimeNum()
mvalue = dataInfo.getMissingValue() #Set output nc data file
print 'Create output NC file: ' + outfn
ncfile = NetcdfFileWriter.createNew(NetcdfFileWriter.Version.netcdf3, outfn)
#Add dimensions
print 'Add dimensions...'
xDim = ncfile.addDimension(None, 'lon', xnum)
yDim = ncfile.addDimension(None, 'lat', ynum)
tDim = ncfile.addDimension(None, 'time', tnum) #Add global attributes
print 'Add global attributes...'
ncfile.addGroupAttribute(None, Attribute('Conventions', 'CF-1.6'))
ncfile.addGroupAttribute(None, Attribute('Title', 'Sand and dust storm forecasting'))
ncfile.addGroupAttribute(None, Attribute('Model', 'CUACE/Dust'))
ncfile.addGroupAttribute(None, Attribute('Center', 'WMO SDS-WAS Asian Center'))
ncfile.addGroupAttribute(None, Attribute('Agency', 'China Meteorological Administration')) #Add variables
xvar = ncfile.addVariable(None, 'lon', DataType.FLOAT, [xDim])
xvar.addAttribute(Attribute('units', 'degrees_east'))
xvar.addAttribute(Attribute('long_name', 'Longitude'))
xvar.addAttribute(Attribute('standard_name', 'longitude'))
xvar.addAttribute(Attribute('axis', 'X'))
yvar = ncfile.addVariable(None, 'lat', DataType.FLOAT, [yDim])
yvar.addAttribute(Attribute('units', 'degrees_north'))
yvar.addAttribute(Attribute('long_name', 'Latitude'))
yvar.addAttribute(Attribute('standard_name', 'latitude'))
yvar.addAttribute(Attribute('axis', 'Y'))
tvar = ncfile.addVariable(None, 'time', DataType.INT, [tDim])
tvar.addAttribute(Attribute('units', 'hours since 1900-01-01 00:00:0.0'))
tvar.addAttribute(Attribute('long_name', 'Time'))
tvar.addAttribute(Attribute('standart_name', 'time'))
tvar.addAttribute(Attribute('axis', 'T'))
#Data variables
vnames = ['load','con','dry','wet','aod']
varlist = []
var = ncfile.addVariable(None, 'LOAD_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Dust load'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'SCONC_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Surface dust concentration'))
var.addAttribute(Attribute('units', 'ug/m3'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'DDEPO_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', '3-hour accumulated dry deposition'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'WDEPO_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', '3-hour accumulated wet deposition'))
var.addAttribute(Attribute('units', 'kg/m2'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var)
var = ncfile.addVariable(None, 'AOD550_DUST', DataType.FLOAT, [tDim, yDim, xDim])
var.addAttribute(Attribute('long_name', 'Dust optical depth at 550nm'))
var.addAttribute(Attribute('units', '-'))
var.addAttribute(Attribute('missing_value', -9999.0))
varlist.append(var) #Write nc file
ncfile.create()
#Write x,y,z,t variables
print 'Write x variable...'
shape = jarray.array([xnum], 'i')
data = Array.factory(DataType.FLOAT, shape)
for i in range(0,xnum):
data.set(i, X[i])
ncfile.write(xvar, data) print 'Write y variable...'
shape = jarray.array([ynum], 'i')
data = Array.factory(DataType.FLOAT, shape)
for i in range(0,ynum):
data.set(i, Y[i])
ncfile.write(yvar, data) print 'Write time variable...'
format = SimpleDateFormat('yyyy-MM-dd')
sdate = format.parse('1900-01-01')
tvalues = dataInfo.getTimeValues(sdate, 'hours')
shape = jarray.array([tnum], 'i')
data = Array.factory(DataType.INT, shape)
for i in range(0,tnum):
data.set(i, tvalues[i])
ncfile.write(tvar, data) #Write data variables
print 'Write data variable...'
for vname, var in zip(vnames, varlist):
for t in range(0, tnum):
print 'Time: ' + str(t + 1)
mdi.setTimeIndex(t)
gData = mdi.getGridData(vname)
ngData = gData.project(fromProjInfo, toProjInfo, X, Y, ResampleMethods.Bilinear)
origin = jarray.array([t, 0, 0], 'i')
ncfile.write(var, origin, NetCDFDataInfo.gridToArray3D(ngData)) #Close nc file
ncfile.flush()
ncfile.close() print 'Finished'
上面转换的netCDF文件绘制模式结果和地面天气现象观测叠加动画图的示例脚本:
# coding=utf-8
#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2015-3-13
# Purpose: Read CUACE/Dust netCDF data and MICAPS observation data to plot figures
# Note: Sample
#-----------------------------------------------------
print 'Loading classes...'
from org.meteoinfo.layout import MapLayout
from org.meteoinfo.data import GridData
from org.meteoinfo.data.meteodata import MeteoDataInfo, DrawMeteoData
from org.meteoinfo.legend import LegendScheme
from org.meteoinfo.shape import ShapeTypes
from org.meteoinfo.global.image import AnimatedGifEncoder
import os.path
import jarray
import datetime
import sys
from java.util import Date, Calendar, Locale
from java.text import SimpleDateFormat
from java.awt import Color #Set date
year = 2013
month = 3
day = 1
hour = 0
sdate = datetime.datetime(year, month, day, hour) #sdate = datetime.date.today()
#if len(sys.argv) >= 2:
# sdate = sdate - datetime.timedelta(days=int(sys.argv[1]))
# sdate = sdate + datetime.timedelta(days=1)
print sdate
dformat = SimpleDateFormat('HH dd MMM yyy', Locale.ENGLISH)
dformat1 = SimpleDateFormat('yyMMddHH')
cal = Calendar.getInstance() #Set model
#model = 'CUACE-DUST_CMA'
model = 'ADAM2_KMA' #Set directory
dataDir = 'D:/Working/2015/International/SDS_Asian_Region_Center/Model_Verification'
obsDir = 'U:/data/micaps/2014/plot'
obsDir = 'E:/MetData/micaps'
runDir = dataDir
outDir = os.path.join(dataDir, 'figure')
if not os.path.exists(outDir):
os.mkdir(outDir)
#Set input/output file names
infn = os.path.join(dataDir, 'WMO_SDS-WAS_Asian_Center_Model_Forecasting_' + model + '_' \
+ sdate.strftime('%Y-%m-%d') + '.nc')
projfn = os.path.join(runDir, 'sds_asian.mip') #Plot data
print 'Plot data...'
mapLayout = MapLayout()
mapLayout.loadProjectFile(projfn)
mf = mapLayout.getActiveMapFrame()
title = mapLayout.getTexts().get(2)
legend = mapLayout.getLegends()[0] #---- Set weather list - sand and dust storm
weathers = [6, 7, 8, 9, 30, 31, 32, 33, 34, 35]
#---- Set weather list - sand and dust storm and haze
#weathers = [5, 6, 7, 8, 9, 30, 31, 32, 33, 34, 35] #---- Create MeteoDataInfo object
mdi = MeteoDataInfo()
omdi = MeteoDataInfo() #---- Plot loop
mdi.openNetCDFData(infn)
lsfn = os.path.join(runDir,'dust_conc.lgs')
print 'Read data file: ' + infn
aLS = LegendScheme(ShapeTypes.Polygon)
aLS.importFromXMLFile(lsfn)
tnum = mdi.getDataInfo().getTimeNum()
#tnum = 3
s = 'SCONC_DUST'
giffn = os.path.join(outDir, 'V_' + s + '_' + model + '_' + sdate.strftime('%Y%m%d') + '--loop-.gif')
print giffn
encoder = AnimatedGifEncoder()
encoder.setRepeat(0)
encoder.setDelay(1000)
encoder.start(giffn)
sTime = mdi.getDataInfo().getTimes().get(0)
for t in range(1, tnum):
mdi.setTimeIndex(t)
aTime = mdi.getDataInfo().getTimes().get(t)
cal.setTime(aTime)
cal.add(Calendar.HOUR, 8)
bjTime = cal.getTime()
#---- Open observation weather data
obsfn = os.path.join(obsDir, dformat1.format(bjTime) + '.000')
print obsfn
if not os.path.exists(obsfn):
continue
omdi.openMICAPSData(obsfn)
wData = omdi.getStationData('WeatherNow')
weatherLayer = DrawMeteoData.createWeatherSymbolLayer(wData, weathers, 'Weather')
#for lb in weatherLayer.getLegendScheme().getLegendBreaks():
# lb.setColor(Color.red)
weatherLayer.setAvoidCollision(False)
mf.removeMeteoLayers()
mf.addLayer(weatherLayer)
#---- Get grid data and create a shaded layer
gData = mdi.getGridData(s)
aLayer = DrawMeteoData.createShadedLayer(gData, aLS, 'Forecasting_' + s, 'Data', True)
aLayer.setProjInfo(mdi.getProjectionInfo())
mf.addLayer(aLayer)
mf.moveLayer(aLayer, 0)
#---- Set title
title.setLabelText('Run: ' + dformat.format(sTime) + ' Valid: ' + dformat.format(aTime) \
+ '(H+' + str(t * 3) + ')')
#---- Set legend
legend.setLegendLayer(aLayer)
mapLayout.paintGraphics()
encoder.addFrame(mapLayout.getViewImage())
figurefn = os.path.join(outDir, 'V_' + model + '_' + s + '_' + dformat1.format(aTime) + '.png')
print 'Output figure: ' + figurefn
mapLayout.exportToPicture(figurefn) encoder.finish()
print 'Finished'

MeteoInfo脚本示例:GrADS to netCDF的更多相关文章
- MeteoInfo脚本示例:读取FY3A AOD HDF文件
FY3A卫星有AOD产品数据,HDF格式,这里示例用MeteoInfo脚本程序读取和显示该类数据. 脚本程序如下: #----------------------------------------- ...
- MeteoInfoLab脚本示例:创建netCDF文件(合并文件)
在MeteoInfoLab中增加了创建netCDF文件并写入数据的功能,这里利用合并多个netCDF文件为一个新的netCDF文件为例.1.创建一个可写入的netCDF文件对象(下面用ncfile表示 ...
- MeteoInfoLab脚本示例:Hamawari-8 netCDF data
示例数据:ftp://ftp.bom.gov.au/anon/sample/catalogue/Satellite/IDE00220.201507140300.nc 该数据的分辨率很高(22000*2 ...
- MeteoInfoLab脚本示例:闪电位置图
这个脚本示例读取文本格式的闪电数据,读出每条闪电记录的经纬度和强度,在地图上绘制出每个闪电的位置,并用符号和颜色区分强度正负.数据格式如下:0 2009-06-06 00:01:16.6195722 ...
- MeteoInfoLab脚本示例:FY-3C全球火点HDF数据
FY-3C全球火点HDF数据包含一个FIRES二维变量,第一维是火点数,第二维是一些属性,其中第3.4列分别是火点的纬度和经度.下面的脚本示例读出所有火点经纬度并绘图.脚本程序: #Add data ...
- MeteoInfoLab脚本示例:Trajectory
示例读取HYSPLIT模式输出的气团轨迹数据文件,生成轨迹图层,并显示轨迹各节点的气压图.脚本程序: f = addfile_hytraj('D:/MyProgram/Distribution/jav ...
- MeteoInfoLab脚本示例:站点数据绘制等值线
站点数据绘制等值线需要首先将站点数据插值为格点数据,MeteoInfo中提供了反距离权法(IDW)和cressman两个方法,其中IDW方法可以有插值半径的选项.这里示例读取一个MICAPS第一类数据 ...
- MeteoInfoLab脚本示例:Maskout图形
Maskout通常有两种类型:Maskout图形和Maskout数据.这里是Maskout图形的示例.需要用shaperead读取地图数据形成图层作为Maskout图层(这里是中国的行政区域china ...
- MeteoInfoLab脚本示例:MODIS AOD
MODIS的气溶胶光学厚度(AOD)产品应用很广,数据可以在Giovanni上下载:http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html ...
随机推荐
- ORA-00119: ORA-00132: 解决办法 -九五小庞
问题描述: 1. em打开中提示 https://localhost:1158/em/console/database/instance/repDown?target=orclweng&typ ...
- 以jar包为容器的java程序访问一同打到jar包里的配置文件的方法
Java程序有时会被打到jar包里执行,同时src/main/resources里一些配置文件也会被打进去. 比如,src/main/resources下有一个box目录,里面有几个json文件,用m ...
- python图片转码为base64
import base64 def image_base64(): with open(image_path, 'rb', )as f: base64_data = base64.b64encode( ...
- PHP木马免杀的一些总结
前言 这篇文章写一些php木马免杀的一些技巧,希望对大家有点帮助.这里解释一下什么是php木马,这里大体分为三种: 能完成写入文件.列目录.查看文件.执行一些系统命令等少量功能的,这种的是" ...
- adb连接手机
1. 通过wifi, 利用adb来连接手机. 在pc的cmd中输入命令: adb connect 192.168.1.100 其中adb就是手机的ip. 如果连接成功, 就可以进入android的sh ...
- [LeetCode]21. 合并两个有序链表(递归)
题目 将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 示例: 输入:1->2->4, 1->3->4 输出:1->1-> ...
- SpringCloud实战 | 第一篇:Windows搭建Nacos服务
前言 为什么放弃eureka选择nacos?本地开发环境需要搭建nacos-server,想着是很简单的事但是被一些文章(少了关键必要的步骤)给带偏了,所以亲测成功后写了这篇文章. 搭建nacos-s ...
- 对比ERP解读企业资产管理EAM在电力行业应用
对比ERP解读企业资产管理EAM在电力行业应用 .关于EAMEAM (Enterprise Asset Management)企业资产管理,是面向固定资产占企业资产主要部分的资产密集型(Capital ...
- 【测试基础第六篇】bug定义及生命周期
bug定义 狭义:软件程序的漏洞或缺陷 广义:测试工程师或用户所发现和提出的软件可改进的细节(增强型.建议性)或需求文档存在差异的功能实现 职责:发现bug,提给开发,让其修改 bug类型--了解 代 ...
- vue-cli3.0 vue组件发布到npm
一.创建项目 1.vue create xxx (使用的版本是3.1.0) 2.把src目录名称改为examples 3.新建文件夹packages 用来存放组件 4.比如:新建Button组件 in ...