【USACO02FEB】Rebuilding Roads 重建道路 题解(树形DP)
题目大意:问使含有$p$个节点的子树分离至少需要去掉几条边。
------------------
设$f[i][j]$表示以$i$为根的子树保留$j$个节点所去掉的最少边数。
初始化$f[u][1]=c[u]$。$c[u]$是这个节点的度。
转移方程$f[u][j]=min(f[u][j],f[u][k]+f[v][j-k]-2)$。为什么要减$2$?这是因为我们在初始化的时候已经把连接父节点和子节点的这条边去掉了。这时候再把他们连起来,为防止重复计算,我们分别把$u->v$和$v->u$的边去掉(代码中是双向连边)。
代码:
//f[u][j]min(f[u][j],f[u][k]+f[v][j-k]-2)
//-2:now->to to->now 减去重复的边 初始化的时候已经减掉了
#include<bits/stdc++.h>
using namespace std;
int c[],n,p,f[][],ans=0x3f3f3f3f;
struct node
{
int next,to;
}edge[];
int head[],cnt;
inline void add(int from,int to)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
void dfs(int now,int fa)
{
f[now][]=c[now];
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to!=fa)
{
dfs(to,now);
for (int j=p;j>=;j--)
for (int k=;k<j;k++)
f[now][j]=min(f[now][j],f[now][k]+f[to][j-k]-);
}
}
}
int main()
{
memset(f,0x3f,sizeof(f));
n=read(),p=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
c[x]++;c[y]++;
add(x,y);add(y,x);
}
dfs(,);
for (int i=;i<=n;i++) ans=min(ans,f[i][p]);
printf("%d",ans);
return ;
}
【USACO02FEB】Rebuilding Roads 重建道路 题解(树形DP)的更多相关文章
- [Usaco2002 Feb]Rebuilding Roads重建道路
题目描述 一场可怕的地震后,奶牛用N个牲口棚(1 <= N <= 150,编号1..N)重建了农民John的牧场.奶牛没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是唯一 ...
- Codeforces 835 F Roads in the Kingdom(树形dp)
F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...
- 【bzoj2435】[NOI2011]道路修建 树形dp
题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿意修建恰好 n – 1条双向道路. 每条道路的修 ...
- [luogu2052 NOI2011] 道路修建 (树形dp)
传送门 Description 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
- [noi2011]道路修建 树形dp
这道题可以说是树形dp的入门题,也可以看成是一道检验[树]这个数据结构的题目: 这道题只能bfs,毕竟10^6的复杂度win下肯定爆栈了: 但是最恶心的还不是这个,实测用printf输出 用cout输 ...
- Codeforces 671D. Roads in Yusland(树形DP+线段树)
调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...
- 洛谷P2052 [NOI2011]道路修建(树形DP)
题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...
- 洛谷4438 [Hnoi2018]道路 【树形dp】
题目 题目太长懒得打 题解 HNOI2018惊现普及+/提高? 由最长路径很短,设\(f[i][x][y]\)表示\(i\)号点到根有\(x\)条未修公路,\(y\)条未修铁路,子树所有乡村不便利值的 ...
随机推荐
- MySQL 对window函数执行sum函数疑似Bug
MySQL 对window函数执行sum函数疑似Bug 使用MySql的窗口函数统计数据时,发现一个小的问题,与大家一起探讨下. 环境配置: mysql-installer-community-8.0 ...
- 数据可视化之DAX篇(十一)Power BI度量值不能作为坐标轴?这个解决思路送给你
https://zhuanlan.zhihu.com/p/79522456 对于PowerBI使用者而言,经常碰到的一个问题是,想把度量值放到坐标轴上,却发现无法实现.尤其是初学者,更是习惯性的想这么 ...
- 数据可视化之PowerQuery篇(七)Power Query应用技巧:批量更改列名
https://zhuanlan.zhihu.com/p/130460772 今天分享一个PowerQuery的小技巧,导入到PowerBI中的数据,如果想要更改数据的列名,可以在PQ编辑器中直接双 ...
- java大数据最全课程学习笔记(1)--Hadoop简介和安装及伪分布式
Hadoop简介和安装及伪分布式 大数据概念 大数据概论 大数据(Big Data): 指无法在一定时间范围内用常规软件工具进行捕捉,管理和处理的数据集合,是需要新处理模式才能具有更强的决策力,洞察发 ...
- bzoj1745[Usaco2005 oct]Flying Right 飞行航班*
bzoj1745[Usaco2005 oct]Flying Right 飞行航班 题意: n个农场,有k群牛要从一个农场到另一个农场(每群由一只或几只奶牛组成)飞机白天从农场1到农场n,晚上从农场n到 ...
- Mybatis执行流程浅析(附深度文章推荐&面试题集锦)
首先推荐一个简单的Mybatis原理视频教程,可以作为入门教程进行学习:点我 (该教程讲解的是如何手写简易版Mybatis) 执行流程的理解 理解Mybatis的简单流程后自己手写一个,可以解决百分之 ...
- centos7.6静默安装oracle 11G RAC
环境介绍, esxi6.0 ,VMware vSphere Client6.0 linux 版本Centos7.6(最小化安装) Oracle 版本 oracle 11g 11.2.0.4 虚拟化环境 ...
- Appium+Python3环境搭建,其实超简单!【软件测试教程】
appium可以说是做app最火的一个自动化框架,它的主要优势是支持android和ios,另外脚本语言也是支持java和Python.略懂Python,所以接下来的教程是appium+python, ...
- 【Python学习笔记七】从配置文件中读取参数
将一些需要更改或者固定的内容存放在配置文件中,通过读取配置文件来获取参数,这样修改以及使用起来比较方便 1.首先是配置文件的写法如下一个environment.ini文件: 里面“[]”存放的是sec ...
- 服务注册与发现【Eureka】- Eureka简介
什么是服务治理 SpringCloud 封装了 Netflix 公司开发的 Eureka 模块来 实现服务治理. 在传统的rpc远程调用框架中,管理每个服务与服务之间依赖关系比较复杂,管理比较复杂,所 ...