【USACO02FEB】Rebuilding Roads 重建道路 题解(树形DP)
题目大意:问使含有$p$个节点的子树分离至少需要去掉几条边。
------------------
设$f[i][j]$表示以$i$为根的子树保留$j$个节点所去掉的最少边数。
初始化$f[u][1]=c[u]$。$c[u]$是这个节点的度。
转移方程$f[u][j]=min(f[u][j],f[u][k]+f[v][j-k]-2)$。为什么要减$2$?这是因为我们在初始化的时候已经把连接父节点和子节点的这条边去掉了。这时候再把他们连起来,为防止重复计算,我们分别把$u->v$和$v->u$的边去掉(代码中是双向连边)。
代码:
//f[u][j]min(f[u][j],f[u][k]+f[v][j-k]-2)
//-2:now->to to->now 减去重复的边 初始化的时候已经减掉了
#include<bits/stdc++.h>
using namespace std;
int c[],n,p,f[][],ans=0x3f3f3f3f;
struct node
{
int next,to;
}edge[];
int head[],cnt;
inline void add(int from,int to)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
void dfs(int now,int fa)
{
f[now][]=c[now];
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to!=fa)
{
dfs(to,now);
for (int j=p;j>=;j--)
for (int k=;k<j;k++)
f[now][j]=min(f[now][j],f[now][k]+f[to][j-k]-);
}
}
}
int main()
{
memset(f,0x3f,sizeof(f));
n=read(),p=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
c[x]++;c[y]++;
add(x,y);add(y,x);
}
dfs(,);
for (int i=;i<=n;i++) ans=min(ans,f[i][p]);
printf("%d",ans);
return ;
}
【USACO02FEB】Rebuilding Roads 重建道路 题解(树形DP)的更多相关文章
- [Usaco2002 Feb]Rebuilding Roads重建道路
题目描述 一场可怕的地震后,奶牛用N个牲口棚(1 <= N <= 150,编号1..N)重建了农民John的牧场.奶牛没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是唯一 ...
- Codeforces 835 F Roads in the Kingdom(树形dp)
F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...
- 【bzoj2435】[NOI2011]道路修建 树形dp
题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿意修建恰好 n – 1条双向道路. 每条道路的修 ...
- [luogu2052 NOI2011] 道路修建 (树形dp)
传送门 Description 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
- [noi2011]道路修建 树形dp
这道题可以说是树形dp的入门题,也可以看成是一道检验[树]这个数据结构的题目: 这道题只能bfs,毕竟10^6的复杂度win下肯定爆栈了: 但是最恶心的还不是这个,实测用printf输出 用cout输 ...
- Codeforces 671D. Roads in Yusland(树形DP+线段树)
调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...
- 洛谷P2052 [NOI2011]道路修建(树形DP)
题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...
- 洛谷4438 [Hnoi2018]道路 【树形dp】
题目 题目太长懒得打 题解 HNOI2018惊现普及+/提高? 由最长路径很短,设\(f[i][x][y]\)表示\(i\)号点到根有\(x\)条未修公路,\(y\)条未修铁路,子树所有乡村不便利值的 ...
随机推荐
- 数据可视化之powerBI基础(八)PowerBI的表格,你真的会用吗
https://zhuanlan.zhihu.com/p/64413000 在PowerBI的可视化对象中,还有两个「表格」对象,表格的作用不仅可以在报表提供明细数据,还经常用来测试度量值的返回结果, ...
- 数据可视化之PowerQuery篇(十四)产品关联度分析
https://zhuanlan.zhihu.com/p/64510355 逛超市的时候,面对货架上琳琅满目的商品,你会觉得这些商品的摆放,或者不同品类的货架分布是随机排列的吗,当然不是. 应该都听说 ...
- css 浮动 定位
浮动 元素的浮动是指设置了浮动属性的元素会脱离标准普通 流的控制,移动到其父元素中指定位置的过程. 语法: float . left . right . none(默认) 注意: 1 ...
- Python Ethical Hacking - BACKDOORS(1)
REVERSE_BACKDOOR Access file system. Execute system commands. Download files. Upload files. Persiste ...
- T133305 57级返校测试重测-T1-数字配对
大致题意: 给定偶数个的数字,操作使得两两配对后的最大值最小. 基本思路: 先排序,然后设i=1,j=n(序列以下标1开始), 每次配对为a[i]+a[j],然后++i,--j. 最后找到最大的配对结 ...
- python pytest接口自动化框架搭建(一)
1.首先安装pytest pip install pytest 2.编写单测用例 在pytest框架中,有如下约束: 所有的单测文件名都需要满足test_*.py格式或*_test.py格式. 在单测 ...
- Fisher算法+两类问题
文章目录 一.Fisher算法 二.蠓的分类问题: 三.代码实现: 一.Fisher算法 二.蠓的分类问题: 两种蠓Af和Apf已由生物学家根据它们的触角和翼长加以区分(Af是能传播花粉的益虫,Apf ...
- 写verilog程序需要注意的地方
1.在always块语句中一定要注意if-else if-else if-else的判断条件的顺序. 2.同一个寄存器信号只能在同一个always or initial 块中进行赋值. 3.在控制一个 ...
- Cordova iPhone 刘海屏 和 安卓瀑布屏 等异形屏幕的适配处理
1. 在cordova项目的config.xml中指定StatusBarOverlaysWebView(需要cordova-plugin-statusbar插件支持),表示应用界面是否覆盖状态栏(系 ...
- spring-cloud-alibaba-sentinel和feign配合使用,启动报Caused by: java.lang.AbstractMethodError: com.alibaba.cloud.sentinel.feign.SentinelContractHolder.parseAndValidateMetadata(Ljava/lang/Class;)Ljava/util/List
背景 我在学习spring-cloud-alibaba技术栈期间,在学习服务熔断与限流的时候,服务启动发生了以下异常 #这是控制台最上面的 sun.misc.Unsafe.park(Native Me ...