迪杰斯特拉(dijkstra)算法:求最短路径的算法,数据结构课程中学习的内容。

1 . 理解

算法思想::设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将 加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

算法的实现步骤:

1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或 )(若u不是v的出边邻接点)。

(2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

(4)重复步骤(2)和(3)直到所有顶点都包含在S中。

具体实现的思考:

minlen(i)=min{minlen(i),minlen(j)+a[j][i]}

其中,i为目标点,j为i之前的一点,遍历其他所有的点为j,如果不相邻,则a[j][i]=Max。

由此实现如下代码。

2 . c语言初步实现

#include <stdio.h>
#include <stdlib.h>

#define N 7
#define Max 0x0fffffff

typedef struct _node
{
int way[N-1];
int len;
}node;

void addWay(node *nd,int n,int type)//type=1表示找到新的最小路径,type=0表示找到最小路径
{
int i=0;
while(nd->way[i]!=0&&i<N-1)
{
i++;
}
if(i>=N-1)
{
printf("The node's way[] is full.");
}
else
{
if(0==type)
nd->way[i]=n;
if(1==type)
nd->way[i-1]=n;
}

}

void dkstra(node nd[],int (*a)[N])
{
int i=0,j=0;

for(i=1;i<N;i++)
{
int tag=0;
for(j=0;j<N;j++)
{
if(nd[i].len<Max&&nd[j].len+a[j][i]<Max)
tag=1;
nd[i].len<=(nd[j].len+a[j][i])?(nd[i].len=nd[i].len):(nd[i].len=(nd[j].len+a[j][i]),addWay(&nd[i],j+1,tag));
tag=0;
}
}

}

int main()
{
int i=0,j=0,x=0,y=0,le=0;
int a[N][N];
for(i=0;i<N;i++)//赋值默认路径长度max
{
for(j=0;j<N;j++)
{
a[i][j]=Max;
}
}
for(;x!=-1;)//手动赋权值
{
scanf("%d,%d,%d",&x,&y,&le);
a[x-1][y-1]=le;
a[y-1][x-1]=le;
}
a[0][0]=0;
node nd[N]={0};
for(i=0;i<N;i++)
{
nd[i].len=a[0][i];
}

dkstra(nd,a);
for(i=0;i<N;i++)
{
j=0;
printf("Node %d :\n best way : 1 ",i+1);
while(nd[i].way[j]!=0)
{
printf(" -> ");
printf("%d",nd[i].way[j]);

j++;
}
printf(" -> ");
printf("%d",i+1);
printf("\nminLength: %d\n",nd[i].len);
}
return 0;
}

测试用例:

测试结果:

问题,每一个i点都依赖于j点,用上述代码的话,在得到前几个点的minlen时,是否会出错?

测试用例:测试结果:

发现,minlen[2]不正确。出现这种情况的原因是在找minlen[2]的时候,minlen[6]此时还是max,所以遍历不出真正的最短路径。这个时候我们再循环一次,由于后续的最短路径已经找到,此时是不是可以找到真正的最短路径呢?

代码修改部分:

void dkstra(node nd[],int (*a)[N])
{
int i=0,j=0;

for(i=1;i<N;i++)
{
int tag=0;
for(j=0;j<N;j++)
{
if(nd[i].len<Max&&nd[j].len+a[j][i]<Max)
tag=1;
nd[i].len<=(nd[j].len+a[j][i])?(nd[i].len=nd[i].len):(nd[i].len=(nd[j].len+a[j][i]),addWay(&nd[i],j+1,tag));
tag=0;
}
}

for(i=1;i<N;i++)
{
int tag=0;
for(j=0;j<N;j++)
{
if(nd[i].len<Max&&nd[j].len+a[j][i]<Max)
tag=1;
nd[i].len<=(nd[j].len+a[j][i])?(nd[i].len=nd[i].len):(nd[i].len=(nd[j].len+a[j][i]),addWay(&nd[i],j+1,tag));
tag=0;
}
}
}

测试用例仍然是上面的图,测试结果如下:

此时,最小路径的数据基本正确,但是测试不多,暂时也不能确定代码正确。而且由于addway()的原因,无法保存正确的路径的结点信息。这些问题,等待进一步完善。

迪杰斯特拉(dijkstra)算法的简要理解和c语言实现(源码)的更多相关文章

  1. 迪杰斯特拉(Dijkstra)算法描述及理解

    Dijkstra算法是一种计算单源最短无负边路径问题的常用算法之一,时间复杂度为O(n2) 算法描述如下:dis[v]表示s到v的距离,pre[v]为v的前驱结点,用以输出路径,vis[v]表示该点最 ...

  2. 迪杰斯特拉Dijkstra算法介绍

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...

  3. 最短路径算法-迪杰斯特拉(Dijkstra)算法在c#中的实现和生产应用

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先遍历思想),直到扩展到终点为止 贪心算法(Greedy ...

  4. JS实现最短路径之迪杰斯特拉(Dijkstra)算法

    最短路径: 对于网图来说,最短路径是指两个顶点之间经过的边上权值和最少的路径,我们称第一个顶点是源点,最后一个顶点是终点 迪杰斯特拉 ( Dijkstra) 算法是并不是一下子就求出 了 Vo 到V8 ...

  5. 最短路径-迪杰斯特拉(dijkstra)算法及优化详解

    简介: dijkstra算法解决图论中源点到任意一点的最短路径. 算法思想: 算法特点: dijkstra算法解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算 ...

  6. 最短路径 - 迪杰斯特拉(Dijkstra)算法

    对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点.最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd ...

  7. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  8. C# 迪杰斯特拉(Dijkstra)算法

    Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 其基本思想是,设置顶点集合S并不断地作 ...

  9. 图的最短路径---迪杰斯特拉(Dijkstra)算法浅析

    什么是最短路径 在网图和非网图中,最短路径的含义是不一样的.对于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径. 对于网图,最短路径就是指两顶点之间经过的边上权值之和最 ...

  10. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)

    一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...

随机推荐

  1. 用composer安装Yii

    YII2通过Composer安装方法http://www.yiichina.com/download 一.Composer安装首先到https://getcomposer.org/doc/00-int ...

  2. c++宏使用总结【转】

    C/C++中宏总结C程序的源代码中可包括各种编译指令,这些指令称为预处理命令.虽然它们实际上不是C语言的一部分,但却扩展了C程序设计的环境. ANSI标准定义的C语言预处理程序包括下列命令:  #de ...

  3. 印刷电路板(PCB)的材料

    以玻璃为基础材料的板材可以在高达150℃到250℃的温度下使用.可选的介质材料有: FR4,介电常数ε0为4.6 环氧材料,介电常数ε0为3.9: 聚酰亚胺,介电常数ε0为4.5. 另外,以聚四氟乙烯 ...

  4. C# 更新SQL Server数据库备注信息从另一数据库

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  5. 从css谈模块化

    模块化是现今我们随处都可以听到的一个名词,什么是模块化?为什么我们需要模块化?这是本系列文章我们要弄明白的一个问题.我们也借这部分内容,顺带回顾一下前端的发展历程. 说实话,模块化这个主题有点大,我一 ...

  6. OData 带更新的实例,并能取得元数据格式类型

    http://www.cnblogs.com/kid1412/p/6012938.html#CreateANewEntity <<ABP框架>> OData 集成   文档目录 ...

  7. 在ASP.NET Web API中使用OData

    http://www.alixixi.com/program/a/2015063094986.shtml 一.什么是ODataOData是一个开放的数据协议(Open Data Protocol)在A ...

  8. [Linux] 安装JBoss - CentOS

    CentOS安装Jboss 7 AS方法:(安装java跳过) 1.首先下载JBoss 7 AS的zip文件. 2.使用SSH,上传到CentOS中.(如何使用的是wget命令下载,可以跳过些步),这 ...

  9. AspNetPager控件报错误: Syntax error, unrecognized expression: input#ctl00$ContentPlaceHolder1$Aspnetpager1_input问题解决[摘]

    高版本IE,如IE10或者IE11在浏览页面时出现错误: Syntax error, unrecognized expression: input#ctl00$ContentPlaceHolder1$ ...

  10. eclipse简单使用

    1.10个快捷键: 1. ctrl+shift+r:打开资源       Control-Shift-T: 打开类型(Open type) Control-Shift-F: CodeàJavaàPre ...