update:把程序源代码和数据集也附上http://download.csdn.net/detail/zjccoder/8832699

2015.6.24

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

wine数据来自于UCI数据库。记录的是意大利同一地区3中不同品种的葡萄酒13中化学成分含量,以期通过科学的方法,达到自己主动分类葡萄酒的目的。

本次分类的数据共同拥有178个样本,每一个样本有13个属性,并提供每一个样本的正确分类,用于检验SVM分类的准确定。

首先我们画出数据的可视化图:

% 加载測试数据wine,当中包括的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量
load chapter_WineClass.mat; % 画出測试数据的box可视化图
figure;
boxplot(wine,'orientation','horizontal','labels',categories);
title('wine数据的box可视化图','FontSize',12);
xlabel('属性值','FontSize',12);
grid on; % 画出測试数据的分维可视化图
figure
subplot(3,5,1);
hold on
for run = 1:178
plot(run,wine_labels(run),'*');
end
xlabel('样本','FontSize',10);
ylabel('类别标签','FontSize',10);
title('class','FontSize',10);
for run = 2:14
subplot(3,5,run);
hold on;
str = ['attrib ',num2str(run-1)];
for i = 1:178
plot(i,wine(i,run-1),'*');
end
xlabel('样本','FontSize',10);
ylabel('属性值','FontSize',10);
title(str,'FontSize',10);
end

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvempjY29kZXI=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center">

(图1)

(图2)

图1是wine数据的box可视化图。图2是wine的箱式图。从图上我们非常难分出每一种葡萄酒是哪种类型。以下我们尝试用SVM来分类。



数据的预处理

% 选定训练集和測试集

% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集
train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];
% 对应的训练集的标签也要分离出来
train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];
% 将第一类的31-59,第二类的96-130,第三类的154-178做为測试集
test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];
% 对应的測试集的标签也要分离出来
test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; <strong>%% 数据预处理</strong>
% 数据预处理,将训练集和測试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine);
[mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine];
% mapminmax为MATLAB自带的归一化函数
[dataset_scale,ps] = mapminmax(dataset',0,1);
dataset_scale = dataset_scale'; train_wine = dataset_scale(1:mtrain,:);
test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );



SVM网络建立、训练和预測

<span style="font-size:12px;">%% SVM网络训练
model = svmtrain(train_wine_labels, train_wine, '-c 2 -g 1'); %% SVM网络预測
[predict_label, accuracy,dec_value1] = svmpredict(test_wine_labels, test_wine, model);</span>



结果分析

%% 结果分析

% 測试集的实际分类和预測分类图
% 通过图能够看出仅仅有一个測试样本是被错分的
figure;
hold on;
plot(test_wine_labels,'o');
plot(predict_label,'r*');
xlabel('測试集样本','FontSize',12);
ylabel('类别标签','FontSize',12);
legend('实际測试集分类','预測測试集分类');
title('測试集的实际分类和预測分类图','FontSize',12);
grid on;

利用svm分类的准确率达到了98.8764%,在89个測试样本中仅有一个被分类错误。可见SVM在数据分类方面的强大!

END



基于SVM的数据分类预測——意大利葡萄酒种类识别的更多相关文章

  1. 前馈神经网络练习:使用tensorflow进行葡萄酒种类识别

    数据处理 样本数据描述 样本数据集是double类型的178 * 14矩阵,第一列表示酒所属类别,后面13列分别表示当前样本的13个属性: 1) Alcohol 2) Malic acid 3) As ...

  2. 体系结构复习2——指令级并行(分支预測和VLIW)

    第五章内容较多,接体系结构复习1 5.4 基于硬件猜測的指令级并行 动态分支预測是在程序运行时.依据转移的历史信息等动态确定预測分支方向.主要方法有: 基于BPB(Branch Prediction ...

  3. 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文 ...

  4. LIME:模型预測结果是否值得信任?

    花了一天时间对LIME论文:http://arxiv.org/pdf/1602.04938v1.pdf 细致阅读和代码阅读,实验.大体理解了作者的设计思路. 背景: 我们在建立模型的时候,常常会思考我 ...

  5. x264代码剖析(十三):核心算法之帧间预測函数x264_mb_analyse_inter_*()

    x264代码剖析(十三):核心算法之帧间预測函数x264_mb_analyse_inter_*() 帧间预測是指利用视频时间域相关性,使用临近已编码图像像素预測当前图像的像素,以达到有效去除视频时域冗 ...

  6. MapR CEO对2016大数据的5个预測

    本文来源于我在InfoQ中文站翻译的文章,原文地址是:http://www.infoq.com/cn/news/2016/02/mapr-ceo-5-big-data-predictions MapR ...

  7. 【Energy Forecasting】能源预測的发展和展望

    说明 本文的内容来自Tao Hong博士的Energy Forecasting: Past, Present and Future一文的翻译和整理. 引入 能源预測包括了电力行业中有关预測的广泛的内容 ...

  8. 【原创】基于SVM作短期时间序列的预测

    [面试思路拓展] 对时间序列进行预测的方法有很多, 但如果只有几周的数据,而没有很多线性的趋势.各种实际的背景该如何去预测时间序列? 或许可以尝试下利用SVM去预测时间序列,那么如何提取预测的特征呢? ...

  9. VS2010 C++学习(5):基于DirectShow的视频预览录像程序

    VS2010 C++学习(5):基于DirectShow的视频 预览录像程序 学习VC++编制的基于DirectShow视频捕获程序,主要练习基于DirectShow程序的应用. 一.         ...

随机推荐

  1. rest_framework_HyperlinkedIdentityField

    #生成链接 HyperlinkedIdentityField class UserInfoSerializer(serializers.ModelSerializer): group = serial ...

  2. Wow C++11

    什么是C++11? 一句话C++11是最新的C++标准,在2011年发布,所以叫C++11.在新的标准出现前,我们一直在用的是C++98,可想而知这份标准是1998年发布的,之后再2003年最过小的修 ...

  3. HBase框架基础(三)

    * HBase框架基础(三) 本节我们继续讨论HBase的一些开发常识,以及HBase与其他框架协调使用的方式.在开始之前,为了框架之间更好的适配,以及复习之前HBase的配置操作,请使用cdh版本的 ...

  4. 鼠标滑过,解决ul下 li下a的背景与父级Li不同宽的问题

    我们在写导航或者页面有超链接的地方,有一些是需要超链接的背景和Li的宽度一样的.但是,却没有达到这种效果?为什么? 我们做的效果图:如下 期望的效果:如下 出现这样的原因:由于a是个行内元素,它没有宽 ...

  5. 【转载】eclipse中批量修改Java类文件中引入的package包路径

    原博客地址:http://my.oschina.net/leeoo/blog/37852 当复制其他工程中的包到新工程的目录中时,由于包路径不同,出现红叉,下面的类要一个一个修改包路径,类文件太多的话 ...

  6. 【Git 五】TortoiseGit中SSH密钥的配置方法

    注意:我用的 TortoiseGit 版本是 2.6 的. 一.找到安装目录下的 bin 目录 二.点击 puttygen.exe 三.点击 Generate 生成完毕之后,将 public key ...

  7. write---向指定登录用户终端上发送信息

    write命令用于向指定登录用户终端上发送信息.通过write命令可传递信息给另一位登入系统的用户,当输入完毕后,键入EOF表示信息结束,write命令就会将信息传给对方.如果接收信息的用户不只登入本 ...

  8. Python学习笔记(2)--基本数据类型

    在介绍基本数据类型之前,先说一个系统方法type():返回对象的数据类型,可以帮助我们查看系统的类型定义 python不同的版本,类型名称稍有不同,这里使用的是3.5.2版本 一.基本数据类型: 1. ...

  9. 2014 CodingTrip - 携程编程大赛 (预赛第一场)

    1001: 可以证明(扩展欧几里得),只要卡片中有两个卡片互素,旁边点就是可达的. 因此只需要算出所有卡片不互素的情况有多少种,可用容斥原理. #include <cstdio> #inc ...

  10. 05002_Linux的安装

    1.虚拟机VMware workstation的安装 (1)下载链接:VMware workstation下载 密码:52wt: (2)双击VMware-workstation-full-10.0.2 ...