update:把程序源代码和数据集也附上http://download.csdn.net/detail/zjccoder/8832699

2015.6.24

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

wine数据来自于UCI数据库。记录的是意大利同一地区3中不同品种的葡萄酒13中化学成分含量,以期通过科学的方法,达到自己主动分类葡萄酒的目的。

本次分类的数据共同拥有178个样本,每一个样本有13个属性,并提供每一个样本的正确分类,用于检验SVM分类的准确定。

首先我们画出数据的可视化图:

% 加载測试数据wine,当中包括的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量
load chapter_WineClass.mat; % 画出測试数据的box可视化图
figure;
boxplot(wine,'orientation','horizontal','labels',categories);
title('wine数据的box可视化图','FontSize',12);
xlabel('属性值','FontSize',12);
grid on; % 画出測试数据的分维可视化图
figure
subplot(3,5,1);
hold on
for run = 1:178
plot(run,wine_labels(run),'*');
end
xlabel('样本','FontSize',10);
ylabel('类别标签','FontSize',10);
title('class','FontSize',10);
for run = 2:14
subplot(3,5,run);
hold on;
str = ['attrib ',num2str(run-1)];
for i = 1:178
plot(i,wine(i,run-1),'*');
end
xlabel('样本','FontSize',10);
ylabel('属性值','FontSize',10);
title(str,'FontSize',10);
end

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvempjY29kZXI=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center">

(图1)

(图2)

图1是wine数据的box可视化图。图2是wine的箱式图。从图上我们非常难分出每一种葡萄酒是哪种类型。以下我们尝试用SVM来分类。



数据的预处理

% 选定训练集和測试集

% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集
train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];
% 对应的训练集的标签也要分离出来
train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];
% 将第一类的31-59,第二类的96-130,第三类的154-178做为測试集
test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];
% 对应的測试集的标签也要分离出来
test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; <strong>%% 数据预处理</strong>
% 数据预处理,将训练集和測试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine);
[mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine];
% mapminmax为MATLAB自带的归一化函数
[dataset_scale,ps] = mapminmax(dataset',0,1);
dataset_scale = dataset_scale'; train_wine = dataset_scale(1:mtrain,:);
test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );



SVM网络建立、训练和预測

<span style="font-size:12px;">%% SVM网络训练
model = svmtrain(train_wine_labels, train_wine, '-c 2 -g 1'); %% SVM网络预測
[predict_label, accuracy,dec_value1] = svmpredict(test_wine_labels, test_wine, model);</span>



结果分析

%% 结果分析

% 測试集的实际分类和预測分类图
% 通过图能够看出仅仅有一个測试样本是被错分的
figure;
hold on;
plot(test_wine_labels,'o');
plot(predict_label,'r*');
xlabel('測试集样本','FontSize',12);
ylabel('类别标签','FontSize',12);
legend('实际測试集分类','预測測试集分类');
title('測试集的实际分类和预測分类图','FontSize',12);
grid on;

利用svm分类的准确率达到了98.8764%,在89个測试样本中仅有一个被分类错误。可见SVM在数据分类方面的强大!

END



基于SVM的数据分类预測——意大利葡萄酒种类识别的更多相关文章

  1. 前馈神经网络练习:使用tensorflow进行葡萄酒种类识别

    数据处理 样本数据描述 样本数据集是double类型的178 * 14矩阵,第一列表示酒所属类别,后面13列分别表示当前样本的13个属性: 1) Alcohol 2) Malic acid 3) As ...

  2. 体系结构复习2——指令级并行(分支预測和VLIW)

    第五章内容较多,接体系结构复习1 5.4 基于硬件猜測的指令级并行 动态分支预測是在程序运行时.依据转移的历史信息等动态确定预測分支方向.主要方法有: 基于BPB(Branch Prediction ...

  3. 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文 ...

  4. LIME:模型预測结果是否值得信任?

    花了一天时间对LIME论文:http://arxiv.org/pdf/1602.04938v1.pdf 细致阅读和代码阅读,实验.大体理解了作者的设计思路. 背景: 我们在建立模型的时候,常常会思考我 ...

  5. x264代码剖析(十三):核心算法之帧间预測函数x264_mb_analyse_inter_*()

    x264代码剖析(十三):核心算法之帧间预測函数x264_mb_analyse_inter_*() 帧间预測是指利用视频时间域相关性,使用临近已编码图像像素预測当前图像的像素,以达到有效去除视频时域冗 ...

  6. MapR CEO对2016大数据的5个预測

    本文来源于我在InfoQ中文站翻译的文章,原文地址是:http://www.infoq.com/cn/news/2016/02/mapr-ceo-5-big-data-predictions MapR ...

  7. 【Energy Forecasting】能源预測的发展和展望

    说明 本文的内容来自Tao Hong博士的Energy Forecasting: Past, Present and Future一文的翻译和整理. 引入 能源预測包括了电力行业中有关预測的广泛的内容 ...

  8. 【原创】基于SVM作短期时间序列的预测

    [面试思路拓展] 对时间序列进行预测的方法有很多, 但如果只有几周的数据,而没有很多线性的趋势.各种实际的背景该如何去预测时间序列? 或许可以尝试下利用SVM去预测时间序列,那么如何提取预测的特征呢? ...

  9. VS2010 C++学习(5):基于DirectShow的视频预览录像程序

    VS2010 C++学习(5):基于DirectShow的视频 预览录像程序 学习VC++编制的基于DirectShow视频捕获程序,主要练习基于DirectShow程序的应用. 一.         ...

随机推荐

  1. PermissionError: [Errno 13] in python

    出现该错误,首先尝试以管理员身份运行 cmd.exe 程序,然后关闭所有的与 python 相关的进程. 1. open 打开一个文件夹(目录),而不是文件 这一错误一般发生在使用 open函数对文件 ...

  2. Android--Fragment与Activity通信

    package com.example.testfragment; import com.example.testfragment.MainFargment.BackString; import an ...

  3. sicily 1003. hash

    Description 请用HASH链式法来解决冲突,且规定链表在链表头插入新元素. 规定HASH函数为:h(x) = x % 11,即哈希数组下标为0-10. 给定两种操作: I 操作,插入一个新的 ...

  4. miniUI-SelectGrid 弹出选择表格-翻页选中

    介绍 mini中已经给出 弹出表格的里例子 :MiniUi版本 但是在应用过程中遇到写小问题就是没有办法翻页后一并连之前翻页选中的一起提交 以下是解决方案 正文 下面首先介绍  JS 代码 //存储已 ...

  5. PostgreSQL Replication之第七章 理解Linux高可用(2)

    7.2 衡量可用性 可用性是提供商试图保证一定的可用性级别和客户可以期望的可用性或更多.在某些情况下(取决于服务合同) 收取罚款或减少申购费用是意外停机的原因. 可用性的质量使用百分数来衡量:例如,9 ...

  6. IBM小机的开机步骤

    IBM小机的开机步骤 以下以 IBM P570 小机包含静态逻辑分区(LPAR) 的 Oracle9i RAC环境为例进行讨论 1. 设备(小机.存储.光交......)加电 2. 启动存储 3. 启 ...

  7. vmware fusion8 序列号

  8. 三维偏序(陌上花开) CDQ分治

    十分巧妙. Code: #include <cstdio> #include <algorithm> #include <cstring> #define setI ...

  9. mongodb 的数据备份与恢复

    导入/导出可以操作是本地的或远程的,所以都有以下通用选项[如果是操作本地机并且没有密码的话可以省去]:                1.-h host         主机              ...

  10. vue2.0学习教程

    十分钟上手-搭建vue开发环境(新手教程)https://www.jianshu.com/p/0c6678671635 如何在本地运行查看github上的开源项目https://www.jianshu ...