好题一道啦。做这题时,抓住两个问题:一、给某点染色时,其连通的点是否已有一点以全部代价染色。二、该点染什么颜色。

嗯。第二个问题很容易,但第一个问题不容易了。我一开始就考虑祖父子三层结点的关系,认为在父结点时,要么子结点已染色,要么父结点已染色%#……*&¥%#……

很复杂。。。。

这是条件定得过于严格了,所以走不通。看了题解后,发现,可以把状态条件设得宽一点。

设dp[rt][0][0]为以rt为根的子树内,rt染0颜色,与其连通的块(同色,在子树内的)中,没有一个节点是以全部代价染色的,即没有入口点。

dp[rt][0][1]则为以rt为根的子树内,rt染0颜色,与其连通的块(同色,在子树内的)中,存在一个节点是以全部代价染色的。感觉这个存在实现设得妙,只要存在就可以,条件放宽了许多。

对于dp[r][1][0],dp[r][1][1]有同样的定义。

于是dp[rt][0][0]=sum(min(dp[son][0][0],dp[son][1][1]))+costrt/2;

dp[rt][0][1]=sum(min(dp[son][0][0],dp[son][1][1]))+min(costrt,costrt/2+min(dp[son][0][1]-min(dp[son][0][0],dp[son][1][1]))).解释一下min(dp[son][0][1]-min(dp[son][0][0],dp[son][1][1])。这是把子结点以根的子树状态转化为dp[rt][0][1]的最小代价,其中min(dp[son][0][0],dp[son][1][1])与方程开始的min(dp[son][0][0],dp[son][1][1])是一致的,因而又是一个巧妙的地方。

 #include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#define N 110 using namespace std;
int costA[N],costB[N]; int dp[N][][]; struct edge{
int u,v;
int next;
}Edge[N*];
int n,tot;
int head[N]; void addedge(int u,int v){
Edge[tot].u=u;
Edge[tot].v=v;
Edge[tot].next=head[u];
head[u]=tot++;
} void dfs(int now,int pre){
bool leaf=true;
int sum0=,sum1=;
int CA=(<<),CB=(<<);
for(int e=head[now];e!=-;e=Edge[e].next){
int v=Edge[e].v;
if(v!=pre){
leaf=false;
dfs(v,now);
sum0+=min(dp[v][][],dp[v][][]);
sum1+=min(dp[v][][],dp[v][][]);
CA=min(CA,dp[v][][]-min(dp[v][][],dp[v][][])+costA[now]/);
CB=min(CB,dp[v][][]-min(dp[v][][],dp[v][][])+costB[now]/);
}
}
if(leaf){
dp[now][][]=costA[now]/;
dp[now][][]=costA[now];
dp[now][][]=costB[now]/;
dp[now][][]=costB[now];
}
else{
dp[now][][]=sum0+costA[now]/;
dp[now][][]=sum0+min(costA[now],CA);
dp[now][][]=sum1+costB[now]/;
dp[now][][]=sum1+min(costB[now],CB);
}
} int main(){
int u,v;
while(scanf("%d",&n)!=EOF){
tot=;
memset(head,-,sizeof(head));
for(int i=;i<=n;i++)
scanf("%d",&costA[i]);
for(int i=;i<=n;i++)
scanf("%d",&costB[i]);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
dfs(,);
printf("%d\n",min(dp[][][],dp[][][]));
}
return ;
}

HDU 4340的更多相关文章

  1. hdu 4340 树状DP

    思路:我们定义两个数组,ant[Maxn][2],bob[Maxn][2].ant[i][0]表示还未确定哪个城市被全费用占领,ant[i][1]表示确定了哪个城市被全费用占领.那么ant[i][0] ...

  2. 【HDU - 4340】Capturing a country(树形DP)

    BUPT2017 wintertraining(15) #8A 题意 n(<100)个城市组成的树.A攻击i城市需要a[i]代价,B需要b[i].如果一个城市的邻居被A攻击了,那么A攻击它只要A ...

  3. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  4. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  5. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  6. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  8. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  9. hdu 4481 Time travel(高斯求期望)(转)

    (转)http://blog.csdn.net/u013081425/article/details/39240021 http://acm.hdu.edu.cn/showproblem.php?pi ...

随机推荐

  1. luogu1771 方程的解

    题目大意 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数),x,k是给定的数.我们要求的是这个不定 ...

  2. graphviz.js的图形及属性简单用法

    digraph A { graph[bgcolor="cadetblue" label="图的标题" fontsize=48 fontcolor="g ...

  3. WPF中StringToImage和BoolToImage简单用法

    在WPF的绑定控件操作中,经常会通过bool值或者某些特定的string值做出相应动作.但UI层控件的很多属性对应的都不是Bool值或者对应的只是固定的String值. 这个时候有两方法解决该问题. ...

  4. 利用网络Socket和多线程实现一个双向聊天

    接收键盘输入然后向对方发送消息的线程 package cn.com.chat; import java.io.BufferedReader; import java.io.BufferedWriter ...

  5. B - Nearly Lucky Number

    Problem description Petya loves lucky numbers. We all know that lucky numbers are the positive integ ...

  6. jumpserver install

    本文来源jumpserver官网 一步一步安装 环境 系统: CentOS 7 IP: 192.168.244.144 关闭 selinux 和防火墙 # CentOS 7 $ setenforce ...

  7. [转]Java设计模式学习心得

    http://tech.it168.com/focus/200902/java-design/index.html http://tech.it168.com/j/2007-05-17/2007051 ...

  8. vue1.0.js的初步学习

    vue.js是一个mvvm框架 {{.....}}   常用模板渲染方式 v-model  :将对应变量的值的变化反映到input的vaule中 vue.js 的一个组件 .vue文件包含<te ...

  9. mybatis学习笔记之基础框架(2)

    mybatis学习笔记之基础框架(2) mybatis是一个持久层的框架,是apache下的顶级项目. mybatis让程序将主要精力放在sql上,通过mybatis提供的映射方式,自由灵活生成满足s ...

  10. 基于ACE的TAO开发---一个简单的入门实例-----VS2008(二)

    上一节已经说了如何编译idl文件.现在就用编好的文件来写一个最小的corba小程序的.程序分为服务器程序和客户端程序. 说明下,代码是<基于C++CORBA高级编程>一书中的例子. 1.首 ...