spark算子介绍
1.spark的算子分为转换算子和Action算子,Action算子将形成一个job,转换算子RDD转换成另一个RDD,或者将文件系统的数据转换成一个RDD
2.Spark的算子介绍地址:http://spark.apache.org/docs/2.3.0/rdd-programming-guide.html
3.Spark操作基本步骤【java版本,其他语言可以根据官网的案例进行学习】
(1)创建配置文件,将集群的运行模式设置好,给作业起一个名字,可以使用set方法其他配置设入。
SparkConf sparkConf = new SparkConf().setAppName("Demo").setMaster("local");
这里使用的是local的运行模式,起的名字是Demo
(2)创建SparkContext
JavaSparkContext javaContext = new JavaSparkContext(sparkConf);
(3)使用算子,操作数据
JavaRDD<String> javaRdd = sparkContext.textFile("logfile.txt",);
javaRdd = javaRdd.cache();//这一句必须这样写,我们在数据计算很费时的时候,将数据缓存
long line = javaRdd.count();
System.out.println(line);
(4)关闭资源
sparkContext.close();
上面以一个求出数据行数的例子,看一下代码操作的流程。
4.Action算子和介绍和举例
(1)map算子;将数据读取使用map进行操作,使用foreach算子计算出 结果。 每一次读取partition中的一条数据进行分析
案例:将数据乘以10,在输出,测试算子。
package kw.test.demo; import java.util.Arrays;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction; /*
* 本案例:将数据 值乘以一个数,然后将数据的值返回。
*/
public class MapApp {
public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local").setAppName("MapTest");
JavaSparkContext jsc= new JavaSparkContext(conf);
List<Integer> list = Arrays.asList(,,,,) ;
JavaRDD<Integer> javaRdd = jsc.parallelize(list);
JavaRDD<Integer> result = javaRdd.map(new Function<Integer,Integer>() {
@Override
public Integer call(Integer list) throws Exception {
// TODO Auto-generated method stub
return list*;
}
});
result.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer result) throws Exception {
// TODO Auto-generated method stub
System.out.println(result);
}
});
jsc.close();
}
}
(2)MapPartition:将一整块的数据放入然后处理,他和map的区别就是,map将一部分数据放入然后计算,MapPartition将一整块的数据一起放入计算。
如果数据量小的时候,可以是Mappartition中,如果数据量比较大的时候使用Map会比较好,因为可以防止内存溢出。
package kw.test.demo; import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map; import org.apache.hadoop.hive.metastore.api.Function;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction; public class MapPartitionApp {
public static void main(String[] args) {
/*
* 创建配置文件
* 创建出RDD
*/
SparkConf sparkconf = new SparkConf().setMaster("local").setAppName("mapPartition");
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkconf);
/*
* mapPartition的使用是将一个块一起放入到算子中操作。
*
* 假如说RDD上的数据不是太多的时候,可以使用mapPartition 来操作,如果一个RDD的数据比较多还是使用map好
* 返回了大量数据,容易曹成内存溢出。
*/
/* 准备数据集*/
List <String> list= Arrays.asList("kangwang","kang","wang");
JavaRDD<String> javaRDD = javaSparkContext.parallelize(list); final Map<String,Integer> sore = new HashMap<String ,Integer>();
sore.put("kangwang", );
sore.put("kang", );
sore.put("wang", ); JavaRDD<Integer> sRDD= javaRDD.mapPartitions(new FlatMapFunction<Iterator<String>, Integer>() { @Override
public Iterator<Integer> call(Iterator<String> it) throws Exception {
// TODO Auto-generated method stub
List list = new ArrayList(); while(it.hasNext())
{
String name = it.next();
Integer so = sore.get(name);
list.add(so);
}
Iterator i =list.iterator();
return i;
}
});
sRDD.foreach(new VoidFunction<Integer>() { @Override
public void call(Integer it) throws Exception {
// TODO Auto-generated method stub
System.out.println("it的值是"+it);
}
});
}
}
(3)MapPartitionWithIndex:
本案例:
查看将数据的分配到具体的快上的信息。
我们可以指定partition的个数,默认是2
parallelize并行集合的时候,指定了并行度,也就是partition的个数是2
具体他们的数据怎样分,我们并不知道,由spark自己分配
如果想要知道,就可以使用此算子,将数据的值打印出来。
package kw.test.demo; import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
public class MapPartionWithIndex {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("MapPartitionWithIndex").setMaster("local");
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf); //准备数据
List<String> list =new ArrayList<String>();
list.add("Demo1");
list.add("Demo2");
list.add("Demo3");
list.add("Demo4");
list.add("Demo5");
list.add("Demo6");
list.add("Demo7");
list.add("Demo8");
list.add("Demo9");
list.add("Demo10");
list.add("Demo11");
list.add("Demo12");
//创建RDD,指定map的个数4
JavaRDD<String> javaRDD = javaSparkContext.parallelize(list, );
JavaRDD<String> javaRDD1 =javaRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() { @Override
public Iterator<String> call(Integer index, Iterator<String> it2) throws Exception {
// TODO Auto-generated method stub
//index是partition的个数
List<String> list = new ArrayList<String>();
while(it2.hasNext())
{
String name = it2.next();
String info = "partition是:"+index+"数据的name是:"+name;
list.add(info);
}
return list.iterator();
} }, true); javaRDD1.foreach(new VoidFunction<String>() { @Override
public void call(String infos) throws Exception {
// TODO Auto-generated method stub
System.out.println(infos);
}
});
}
}
(4)coalesce算子,是架构RDD的partition的数量缩减
将一定数量的partition压缩到更少的partition分区中去
使用的场景,很多时候在filter算子应用之后会优化一下到使用coalesce算子。
filter算子应用到RDD上面,说白了会应用到RDD对应到里面的每个partition上
数据倾斜,换句话说就是有可能的partition里面就剩下了一条数据 建议使用coalesce算子,
从前各个partition中 数据都更加的紧凑就可以减少它的 个数
package kw.test.demo; import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction; public class CoalesceOpter {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("coalesceDemo").setMaster("local");
JavaSparkContext javaContext = new JavaSparkContext(sparkConf); List<String> list = Arrays.asList("kw1","djf","kw1","fgf",
"djf","kw1","djf","sdsds","kw1","ssdu","djf"); JavaRDD<String>javaRDD = javaContext.parallelize(list,);
JavaRDD<String> info = javaRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() { @Override
public Iterator<String> call(Integer arg0, Iterator<String> arg1) throws Exception {
// TODO Auto-generated method stub
List<String> list =new ArrayList<String>();
while(arg1.hasNext())
{
String name = arg1.next();
String info = arg0 +"^^^^^……………………………………………………………………"+ name;
list.add(info);
}
return list.iterator();
}
}, true);
info.foreach(new VoidFunction<String>() { @Override
public void call(String arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0);
}
});
info.coalesce();
JavaRDD<String> javaRDD1 = info.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() { @Override
public Iterator<String> call(Integer arg0, Iterator<String> arg1) throws Exception {
// TODO Auto-generated method stub
List<String> list = new ArrayList<String>();
while(arg1.hasNext())
{
String name = arg1.next();
String info2 =" " +name +"………………………………" +arg0;
list.add(info2);
}
return list.iterator();
}
}, true);
javaRDD1.foreach(new VoidFunction<String>() { @Override
public void call(String arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0);
}
});
}
}
*
(5)filter此案例将数据的值过滤出来。使用的是filter算子
package kw.test.demo; import java.util.ArrayList;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction; /*
* 此案例将数据的值过滤出来。使用的是filter算子
*/
public class APPFilter {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setMaster("local").setAppName("Filter");
JavaSparkContext jsc = new JavaSparkContext(sparkConf); List<Integer> list = new ArrayList<Integer>();
list.add();
list.add();
list.add();
list.add();
list.add();
list.add();
list.add();
list.add();
list.add(); JavaRDD<Integer> javaRDD = jsc.parallelize(list,);
//返回值 将返回true的数据返回
JavaRDD<Integer> num= javaRDD.filter(new Function<Integer, Boolean>() { @Override
public Boolean call(Integer it) throws Exception {
// TODO Auto-generated method stub
return it%==;
}
});
num.foreach(new VoidFunction<Integer>() { @Override
public void call(Integer arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0);
}
});
}
}
spark程序可以在本地运行,也可以在集群中运行,可以大成jar,放到真实的集群环境中运行程序。
spark算子介绍的更多相关文章
- Spark:常用transformation及action,spark算子详解
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...
- spark API 介绍链接
spark API介绍: http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html#aggregateByKey
- (转)Spark 算子系列文章
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...
- Spark算子总结及案例
spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...
- UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现
UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import ...
- UserView--第一种方式set去重,基于Spark算子的java代码实现
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.Ha ...
- spark算子之DataFrame和DataSet
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...
- Spark算子总结(带案例)
Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key ...
- Spark算子---实战应用
Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat --- ...
随机推荐
- Java解析注解
package com.itbuluoge.anno; import java.lang.reflect.Method; import java.util.ArrayList; import java ...
- js---11闭包
//匿名立即调用函数 (function(){//把a,b,f全部隐藏在函数中,外部访问不到, var a = 5; var b = 6; function f(){ alert(a); } wind ...
- freeMark
1. 什么是freemark Freemaker是一个”模板引擎”,也可以说是一个基于模板技术的生成文本输出的一个通用工具 2.一般的用途: l 能用来生成任意格式的文本:HTML,XML ...
- 【hdu 4289】Control
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=4289 [Description] 给出一个又n个点,m条边组成的无向图.给出两个点s,t.对于图中 ...
- Hyperic
https://my.oschina.net/hyperichq/blog/525590
- 玩转阿里云server——安装WebserverTomcat7
1. 以root用户身份登录阿里云server 2. 使用apt-get install安装Tomcat7 sudo apt-get install tomcat7 3.安装后.Tomcat在启动时报 ...
- [Angular] How to get Store state in ngrx Effect
For example, what you want to do is navgiate from current item to next or previous item. In your com ...
- Myeclipse集成Maven(图文说明)
myeclipse 上安装 Maven3 环境准备: JDK 1.6 Maven 3.2.5 myeclipse 2013 安装 Maven 之前要求先确定你的 JDK 已经安装配置完毕.Maven是 ...
- poj 1001 java大精度
import java.io.* ; import java.math.* ; import java.util.* ; import java.text.* ; public class Main ...
- ASP.NET MVC 4 (十一) Bundles和显示模式--asp.net mvc中 @Scripts.Render("~/bundles/jquery")是什么意思? 在布局文件中使用Scripts.Render()输出脚本包,Styles.Render()输出风格包:
ASP.NET MVC 4 (十一) Bundles和显示模式 ASP.NET MVC 4 引入的js打包压缩功能.打包压缩jquery目录下的文件,在布局文件中使用Scripts.Render()输 ...