1.spark的算子分为转换算子和Action算子,Action算子将形成一个job,转换算子RDD转换成另一个RDD,或者将文件系统的数据转换成一个RDD

2.Spark的算子介绍地址:http://spark.apache.org/docs/2.3.0/rdd-programming-guide.html

3.Spark操作基本步骤【java版本,其他语言可以根据官网的案例进行学习】

(1)创建配置文件,将集群的运行模式设置好,给作业起一个名字,可以使用set方法其他配置设入。

SparkConf sparkConf = new SparkConf().setAppName("Demo").setMaster("local");
这里使用的是local的运行模式,起的名字是Demo

(2)创建SparkContext

JavaSparkContext javaContext = new JavaSparkContext(sparkConf);

(3)使用算子,操作数据

     JavaRDD<String> javaRdd = sparkContext.textFile("logfile.txt",);
javaRdd = javaRdd.cache();//这一句必须这样写,我们在数据计算很费时的时候,将数据缓存
long line = javaRdd.count();
System.out.println(line);

(4)关闭资源

sparkContext.close();

上面以一个求出数据行数的例子,看一下代码操作的流程。

4.Action算子和介绍和举例

(1)map算子;将数据读取使用map进行操作,使用foreach算子计算出 结果。 每一次读取partition中的一条数据进行分析

  案例:将数据乘以10,在输出,测试算子。

package kw.test.demo;

import java.util.Arrays;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction; /*
* 本案例:将数据 值乘以一个数,然后将数据的值返回。
*/
public class MapApp {
public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local").setAppName("MapTest");
JavaSparkContext jsc= new JavaSparkContext(conf);
List<Integer> list = Arrays.asList(,,,,) ;
JavaRDD<Integer> javaRdd = jsc.parallelize(list);
JavaRDD<Integer> result = javaRdd.map(new Function<Integer,Integer>() {
@Override
public Integer call(Integer list) throws Exception {
// TODO Auto-generated method stub
return list*;
}
});
result.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer result) throws Exception {
// TODO Auto-generated method stub
System.out.println(result);
}
});
jsc.close();
}
}

(2)MapPartition:将一整块的数据放入然后处理,他和map的区别就是,map将一部分数据放入然后计算,MapPartition将一整块的数据一起放入计算。

如果数据量小的时候,可以是Mappartition中,如果数据量比较大的时候使用Map会比较好,因为可以防止内存溢出。

package kw.test.demo;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map; import org.apache.hadoop.hive.metastore.api.Function;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction; public class MapPartitionApp {
public static void main(String[] args) {
/*
* 创建配置文件
* 创建出RDD
*/
SparkConf sparkconf = new SparkConf().setMaster("local").setAppName("mapPartition");
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkconf);
/*
* mapPartition的使用是将一个块一起放入到算子中操作。
*
* 假如说RDD上的数据不是太多的时候,可以使用mapPartition 来操作,如果一个RDD的数据比较多还是使用map好
* 返回了大量数据,容易曹成内存溢出。
*/
/* 准备数据集*/
List <String> list= Arrays.asList("kangwang","kang","wang");
JavaRDD<String> javaRDD = javaSparkContext.parallelize(list); final Map<String,Integer> sore = new HashMap<String ,Integer>();
sore.put("kangwang", );
sore.put("kang", );
sore.put("wang", ); JavaRDD<Integer> sRDD= javaRDD.mapPartitions(new FlatMapFunction<Iterator<String>, Integer>() { @Override
public Iterator<Integer> call(Iterator<String> it) throws Exception {
// TODO Auto-generated method stub
List list = new ArrayList(); while(it.hasNext())
{
String name = it.next();
Integer so = sore.get(name);
list.add(so);
}
Iterator i =list.iterator();
return i;
}
});
sRDD.foreach(new VoidFunction<Integer>() { @Override
public void call(Integer it) throws Exception {
// TODO Auto-generated method stub
System.out.println("it的值是"+it);
}
});
}
}

(3)MapPartitionWithIndex:

本案例:
  查看将数据的分配到具体的快上的信息。
  我们可以指定partition的个数,默认是2
  parallelize并行集合的时候,指定了并行度,也就是partition的个数是2
  具体他们的数据怎样分,我们并不知道,由spark自己分配
 如果想要知道,就可以使用此算子,将数据的值打印出来。

package kw.test.demo;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
public class MapPartionWithIndex {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("MapPartitionWithIndex").setMaster("local");
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf); //准备数据
List<String> list =new ArrayList<String>();
list.add("Demo1");
list.add("Demo2");
list.add("Demo3");
list.add("Demo4");
list.add("Demo5");
list.add("Demo6");
list.add("Demo7");
list.add("Demo8");
list.add("Demo9");
list.add("Demo10");
list.add("Demo11");
list.add("Demo12");
//创建RDD,指定map的个数4
JavaRDD<String> javaRDD = javaSparkContext.parallelize(list, );
JavaRDD<String> javaRDD1 =javaRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() { @Override
public Iterator<String> call(Integer index, Iterator<String> it2) throws Exception {
// TODO Auto-generated method stub
//index是partition的个数
List<String> list = new ArrayList<String>();
while(it2.hasNext())
{
String name = it2.next();
String info = "partition是:"+index+"数据的name是:"+name;
list.add(info);
}
return list.iterator();
} }, true); javaRDD1.foreach(new VoidFunction<String>() { @Override
public void call(String infos) throws Exception {
// TODO Auto-generated method stub
System.out.println(infos);
}
});
}
}

(4)coalesce算子,是架构RDD的partition的数量缩减

将一定数量的partition压缩到更少的partition分区中去

使用的场景,很多时候在filter算子应用之后会优化一下到使用coalesce算子。

filter算子应用到RDD上面,说白了会应用到RDD对应到里面的每个partition上

数据倾斜,换句话说就是有可能的partition里面就剩下了一条数据 建议使用coalesce算子,

从前各个partition中 数据都更加的紧凑就可以减少它的 个数

package kw.test.demo;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction; public class CoalesceOpter {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("coalesceDemo").setMaster("local");
JavaSparkContext javaContext = new JavaSparkContext(sparkConf); List<String> list = Arrays.asList("kw1","djf","kw1","fgf",
"djf","kw1","djf","sdsds","kw1","ssdu","djf"); JavaRDD<String>javaRDD = javaContext.parallelize(list,);
JavaRDD<String> info = javaRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() { @Override
public Iterator<String> call(Integer arg0, Iterator<String> arg1) throws Exception {
// TODO Auto-generated method stub
List<String> list =new ArrayList<String>();
while(arg1.hasNext())
{
String name = arg1.next();
String info = arg0 +"^^^^^……………………………………………………………………"+ name;
list.add(info);
}
return list.iterator();
}
}, true);
info.foreach(new VoidFunction<String>() { @Override
public void call(String arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0);
}
});
info.coalesce();
JavaRDD<String> javaRDD1 = info.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() { @Override
public Iterator<String> call(Integer arg0, Iterator<String> arg1) throws Exception {
// TODO Auto-generated method stub
List<String> list = new ArrayList<String>();
while(arg1.hasNext())
{
String name = arg1.next();
String info2 =" " +name +"………………………………" +arg0;
list.add(info2);
}
return list.iterator();
}
}, true);
javaRDD1.foreach(new VoidFunction<String>() { @Override
public void call(String arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0);
}
});
}
}
*

(5)filter此案例将数据的值过滤出来。使用的是filter算子

package kw.test.demo;

import java.util.ArrayList;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction; /*
* 此案例将数据的值过滤出来。使用的是filter算子
*/
public class APPFilter {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setMaster("local").setAppName("Filter");
JavaSparkContext jsc = new JavaSparkContext(sparkConf); List<Integer> list = new ArrayList<Integer>();
list.add();
list.add();
list.add();
list.add();
list.add();
list.add();
list.add();
list.add();
list.add(); JavaRDD<Integer> javaRDD = jsc.parallelize(list,);
//返回值 将返回true的数据返回
JavaRDD<Integer> num= javaRDD.filter(new Function<Integer, Boolean>() { @Override
public Boolean call(Integer it) throws Exception {
// TODO Auto-generated method stub
return it%==;
}
});
num.foreach(new VoidFunction<Integer>() { @Override
public void call(Integer arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0);
}
});
}
}

spark程序可以在本地运行,也可以在集群中运行,可以大成jar,放到真实的集群环境中运行程序。

 

spark算子介绍的更多相关文章

  1. Spark:常用transformation及action,spark算子详解

    常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...

  2. spark API 介绍链接

    spark API介绍: http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html#aggregateByKey

  3. (转)Spark 算子系列文章

    http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...

  4. Spark算子总结及案例

    spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...

  5. UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现

      UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import ...

  6. UserView--第一种方式set去重,基于Spark算子的java代码实现

    UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.Ha ...

  7. spark算子之DataFrame和DataSet

    前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...

  8. Spark算子总结(带案例)

    Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key ...

  9. Spark算子---实战应用

    Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat --- ...

随机推荐

  1. Java解析注解

    package com.itbuluoge.anno; import java.lang.reflect.Method; import java.util.ArrayList; import java ...

  2. js---11闭包

    //匿名立即调用函数 (function(){//把a,b,f全部隐藏在函数中,外部访问不到, var a = 5; var b = 6; function f(){ alert(a); } wind ...

  3. freeMark

    1. 什么是freemark       Freemaker是一个”模板引擎”,也可以说是一个基于模板技术的生成文本输出的一个通用工具 2.一般的用途: l 能用来生成任意格式的文本:HTML,XML ...

  4. 【hdu 4289】Control

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=4289 [Description] 给出一个又n个点,m条边组成的无向图.给出两个点s,t.对于图中 ...

  5. Hyperic

    https://my.oschina.net/hyperichq/blog/525590

  6. 玩转阿里云server——安装WebserverTomcat7

    1. 以root用户身份登录阿里云server 2. 使用apt-get install安装Tomcat7 sudo apt-get install tomcat7 3.安装后.Tomcat在启动时报 ...

  7. [Angular] How to get Store state in ngrx Effect

    For example, what you want to do is navgiate from current item to next or previous item. In your com ...

  8. Myeclipse集成Maven(图文说明)

    myeclipse 上安装 Maven3 环境准备: JDK 1.6 Maven 3.2.5 myeclipse 2013 安装 Maven 之前要求先确定你的 JDK 已经安装配置完毕.Maven是 ...

  9. poj 1001 java大精度

    import java.io.* ; import java.math.* ; import java.util.* ; import java.text.* ; public class Main ...

  10. ASP.NET MVC 4 (十一) Bundles和显示模式--asp.net mvc中 @Scripts.Render("~/bundles/jquery")是什么意思? 在布局文件中使用Scripts.Render()输出脚本包,Styles.Render()输出风格包:

    ASP.NET MVC 4 (十一) Bundles和显示模式 ASP.NET MVC 4 引入的js打包压缩功能.打包压缩jquery目录下的文件,在布局文件中使用Scripts.Render()输 ...