题意:定义一种树,每个节点的权值都是20到2n-1,每个权值出现一次,每个节点的左子树的权值和小于右子树,除非只有一个子树。给你n和d,问有n个节点且恰好深度是d的这种树有多少种。

比赛的时候我没有做出来,当时A的人还是不少,\

有一个超傻逼的居然没想到,就是  ,这表示一个权值较大的节点是大于所有权值小于他的值之和的。

所以对于每一个合法的树,只要把权值最大的放到右子树就可以满足了。

动归过程:f[i][j]表示i个节点深度不超过j的方案种数。

for (int i = ; i <= N; i++){
for (int j = ; j <= N; j++){
f[i][j] = ( * i * f[i - ][j - ]) % MOD;
for (int k = ; k < i - ; k++){
f[i][j] = (f[i][j] + ((C[i][i - ] * C[i - ][k]) % MOD) * ((f[k][j - ] * f[i - k - ][j - ]) % MOD)) % MOD;
}
}
}

对于根节点分两种情况,只有一个子树,或者左右子树都有。

如果只有一个子树,那么f[i][j] = i * f[i-1][j-1] * 2。 意思就是任取一个节点做根节点,然后把满足条件的f[i-1][j-1]作为根节点的子树,左右两个子树所以再乘以2.

如果左右子树都有,情况稍微麻烦一点,那么就枚举左子树中的节点个数k,1≤k≤i-2,对于每一个k,还是任选一个节点做根节点,然后在除了根节点和剩下的最大值外的i-2个点中选k个到左子树,剩下的自然就到右子树了。这是节点的分配,那方案数呢,左子树有k个节点,深度不超过j-1,就是f[k][j-1],右子树有i-k-1各节点,深度同样不超过j-1,就是f[i-k-1][j-1],然后将这些乘起来就得到总的方案数了,所以有了下面总的状态转移方程。

f[i][j] = 2*i*f[i - 1][j - 1] + (i*C[i - 2][k]*f[k][j - 1]*f[i - k - 1][j - 1])(1≤k≤i-2)

其实还是蛮简单的啊,为什么当时不会做呢???智商被压制的感觉特别不爽

 #include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define LL long long
#define eps 1e-8
#define INF 0x3f3f3f3f
#define OPEN_FILE
#define MAXN 400
using namespace std;
LL f[MAXN][MAXN], C[MAXN][MAXN];
const LL MOD = 1e9 + ;
const int N = ;
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
memset(C, , sizeof(C));
C[][] = ;
for (int i = ; i <= N; i++){
C[i][] = ;
for (int j = ; j <= i; j++){
C[i][j] = (C[i - ][j - ] + C[i - ][j]) % MOD;
}
}
memset(f, , sizeof(f));
for (int i = ; i <= N; i++){
f[][i] = ;
}
for (int i = ; i <= N; i++){
for (int j = ; j <= N; j++){
f[i][j] = ( * i * f[i - ][j - ]) % MOD;
for (int k = ; k < i - ; k++){
f[i][j] = (f[i][j] + ((i * C[i - ][k]) % MOD) * ((f[k][j - ] * f[i - k - ][j - ]) % MOD)) % MOD;
}
}
}
int T;
scanf("%d", &T);
int n, d;
for (int cas = ; cas <= T; cas++){
scanf("%d%d", &n, &d);
printf("Case #%d: %I64d\n", cas, (f[n][d] - f[n][d - ] + MOD) % MOD);
}
return ;
}

HDU 4359 Easy Tree DP? 组合数学+动归的更多相关文章

  1. HDU 4359——Easy Tree DP?——————【dp+组合计数】

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  2. HDU 4359 Easy Tree DP?

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. HDU 4359 Easy Tree DP? 带权二叉树的构造方法 dp

    题意: 给定n deep 1.构造一个n个节点的带权树,且最大深度为deep,每一个节点最多仅仅能有2个儿子 2.每一个节点的值为2^0, 2^1 ··· 2^(n-1)  随意两个节点值不能同样 3 ...

  4. HDU 4832 Chess(DP+组合数学)(2014年百度之星程序设计大赛 - 初赛(第二轮))

    Problem Description 小度和小良最近又迷上了下棋.棋盘一共有N行M列,我们可以把左上角的格子定为(1,1),右下角的格子定为(N,M).在他们的规则中,“王”在棋盘上的走法遵循十字路 ...

  5. HDU 5379 Mahjong tree dfs+组合数学

    题意:给你一棵树来分配号码,要求是兄弟节点连续并且每一棵子树连续. 思路:因为要求兄弟和子树都是连续的,所以自己打下草稿就可以发现如果一个节点有3个或3个以上的非叶子结点,那么就无论如何也不能达到目的 ...

  6. 【dp】动归总结

    原标题:[DP专辑]ACM动态规划总结 转载自 http://blog.csdn.net/cc_again?viewmode=list http://blog.csdn.net/cc_again/ar ...

  7. HDU 5513 Efficient Tree

    HDU 5513 Efficient Tree 题意 给一个\(N \times M(N \le 800, M \le 7)\)矩形. 已知每个点\((i-1, j)\)和\((i,j-1)\)连边的 ...

  8. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  9. 【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游(Link-Cut Tree,组合数学)

    [BZOJ5020][THUWC2017]在美妙的数学王国中畅游(Link-Cut Tree,组合数学) 题解 Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙 ...

随机推荐

  1. rdesktop 脚本

    [root@Eren liwm]# cat rdesktop.sh #!/bin/bash -rdesktop -u user  192.168.122.10 -r sound:local -g 10 ...

  2. Keepalived原理及VRRP协议与应用配置(详细)

    转载自:https://blog.csdn.net/u010391029/article/details/48311699 1. 前言 VRRP(Virtual Router Redundancy P ...

  3. React 中组件间通信的几种方式

    在使用 React 的过程中,不可避免的需要组件间进行消息传递(通信),组件间通信大体有下面几种情况: 父组件向子组件通信 子组件向父组件通信 非嵌套组件间通信 跨级组件之间通信 1.父组件向子组件通 ...

  4. 紫书 习题8-11 UVa 1615 (区间选点问题)

    这个点就是贪心策略中的区间选点问题. 把右端点从大到小排序, 左端点从小到大排序. 每次取区间右端点就可以了, 到不能覆盖的时候就ans++, 重新取点 ps:这道题不考虑精度也可以过 要着重复习一下 ...

  5. Qt之QStackedWidget

    简述 QStackedWidget继承自QFrame. QStackedWidget类提供了多页面切换的布局,一次只能看到一个界面. QStackedWidget可用于创建类似于QTabWidget提 ...

  6. Oracle11g R2创建PASSWORD_VERIFY_FUNCTION相应password复杂度验证函数步骤

    Oracle11g R2创建PASSWORD_VERIFY_FUNCTION相应密码复杂度验证函数步骤 运行測试环境:数据库服务器Oracle Linux 5.8 + Oracle 11g R2数据库 ...

  7. oracle树操作(select .. start with .. connect by .. prior)

    oracle中的递归查询能够使用:select .. start with .. connect by .. prior 以下将会讲述oracle中树形查询的经常使用方式.仅仅涉及到一张表. star ...

  8. 【POJ 2750】 Potted Flower(线段树套dp)

    [POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4566   ...

  9. CSRF的原理

    CSRF是什么? (Cross Site Request Forgery, 跨站域请求伪造)是一种网络的攻击方式,它在 2007 年曾被列为互联网 20 大安全隐患之一,也被称为“One Click ...

  10. OpenGL编程逐步深入(八)伸缩变换

    准备知识 伸缩变换非常简单,它的目的是增大或者缩小对象的尺寸.例如:你可能希望用同一个模型创建不同大小的对象(例如形状相同,但大小不同的树木)或者你想改变对象的大小使它和游戏场景匹配.这些例子中你可能 ...