HDFS 数据格式 : 

举例单条数据:02-26 08:01:56 [qtp512249001-42] INFO  async-statistics - class com.spring.aop.StorageManagerStatAspect${"method":"com.systoon.scloud.master.controller.ImageController.download","ip":"172.28.6.131","port":"38001","father":"sun.reflect.GeneratedMethodAccessor8.invoke/null/-1","requestIp":"106.39.33.246","argsMap":{"org.eclipse.jetty.server.Request:0":{"requestURI":"/f/KZ0wxxbvFz924VaHS8JN1Fk42jV9OBMCHYoLtuc9sAkfF.jpg"},"org.eclipse.jetty.server.Response:1":1462183982},"processTime":50,"time":1456444916225,"retValMap":{":":"this object is null"}}

是写出的一行日志。  日志结构是时间 + 打印的类 + JSON
那么现在是要进行一个统计 MR 分析。

那么开始上代码:
        
  1. import com.alibaba.fastjson.JSON;
  2. import com.alibaba.fastjson.JSONObject;
  3. import com.rocky.util.TimeUtils;
  4. import org.apache.hadoop.fs.FileSystem;
  5. import org.apache.hadoop.fs.Path;
  6. import org.apache.hadoop.io.IntWritable;
  7. import org.apache.hadoop.io.LongWritable;
  8. import org.apache.hadoop.io.Text;
  9. import org.apache.hadoop.mapred.*;
  10. import org.apache.hadoop.mapred.lib.MultipleOutputFormat;
  11. import org.apache.hadoop.util.Progressable;
  12. import java.io.IOException;
  13. import java.net.URI;
  14. import java.util.Iterator;
  15. public class MulOutput {
  16. public static final String clazz = "com.spring.aop.StorageManagerStatAspect";
  17. public static final String m_download = "com.systoon.scloud.master.controller.ImageController.download";
  18. public static final String m_upload = "com.systoon.scloud.master.controller.DirectUploadFile.directUploadFile";
  19. public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable>{
  20. private final static IntWritable one = new IntWritable(1);
  21. Text word = new Text();
  22. @Override
  23. public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,
  24. Reporter reporter) throws IOException {
  25. String line = value.toString();
  26. if(line.contains(clazz)){
  27. if(line.contains(m_download)){
  28. String tempObject = line.split(clazz)[1];
  29. String tmp = tempObject.substring(1,tempObject.length());
  30. JSONObject jsonObject = JSON.parseObject(tmp);
  31. String method = jsonObject.get("method").toString();
  32. if( method.equals(m_download) ){
  33. word.set("download");
  34. output.collect(word, one);
  35. }
  36. } else if(line.contains(m_upload)) {
  37. String tempObject = line.split(clazz)[1];
  38. String tmp = tempObject.substring(1,tempObject.length());
  39. JSONObject jsonObject = JSON.parseObject(tmp);
  40. String method = jsonObject.get("method").toString();
  41. if( method.equals(m_upload) ){
  42. word.set("upload");
  43. output.collect(word, one);
  44. }
  45. } else {
  46. word.set("debug");
  47. output.collect(word,one);
  48. }
  49. } else {
  50. word.set("others");
  51. output.collect(word, one);
  52. }
  53. }
  54. }
  55. public static class Reduce extends MapReduceBase
  56. implements Reducer<Text, IntWritable, Text, IntWritable> {
  57. public void reduce(Text key, Iterator<IntWritable> values,
  58. OutputCollector<Text, IntWritable> output, Reporter reporter)
  59. throws IOException{
  60. int sum = 0;
  61. while (values.hasNext()) {
  62. sum += values.next().get();
  63. }
  64. output.collect(key, new IntWritable(sum));
  65. }
  66. }
  67. public static void main(String[] args) throws Exception{
  68. JobConf jobConf = new JobConf(MulOutput.class);
  69. jobConf.setJobName("rocky_test");
  70. String outPath = "/test/mapReduce/statis"+TimeUtils.getStringDate();
  71. final FileSystem filesystem = FileSystem.get(new URI(outPath), jobConf);
  72. if(filesystem.exists(new Path(outPath))){
  73. filesystem.delete(new Path(outPath), true);
  74. }
  75. jobConf.setMapperClass(Map.class); //为job设置Mapper类
  76. jobConf.setMapOutputKeyClass(Text.class); //输出数据设置Key类
  77. jobConf.setMapOutputValueClass(IntWritable.class); //输出数据设置Key类
  78. jobConf.setCombinerClass(Reduce.class); // 为job设置Combiner类
  79. jobConf.setReducerClass(Reduce.class); // 为job设置Reduce类
  80. jobConf.setOutputKeyClass(Text.class); // 输出数据设置Key类
  81. jobConf.setOutputValueClass(IntWritable.class); // 输出数据设置Key类
  82. FileInputFormat.setInputPaths(jobConf, new Path("/test/mapReduce/statistics.log.2016-02-26"));
  83. // // 扫描组合path
  84. // FileInputFormat.addInputPath();
  85. jobConf.setOutputFormat(MyMultipleFilesTextOutputFormat.class);
  86. FileOutputFormat.setOutputPath(jobConf, new Path(outPath));
  87. JobClient.runJob(jobConf); //运行一个job
  88. }
  89. }


简单来讲就是 Map 按行读, Reduce 进行汇总。   也是统计中最最常用的。  轻松解决问题。









附件列表

仿分词统计的MapReduce 程序。的更多相关文章

  1. 在Hadoop上运行基于RMM中文分词算法的MapReduce程序

    原文:http://xiaoxia.org/2011/12/18/map-reduce-program-of-rmm-word-count-on-hadoop/ 在Hadoop上运行基于RMM中文分词 ...

  2. 大数据学习——mapreduce程序单词统计

    项目结构 pom.xml文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&q ...

  3. 从零开始学习Hadoop--第2章 第一个MapReduce程序

    1.Hadoop从头说 1.1 Google是一家做搜索的公司 做搜索是技术难度很高的活.首先要存储很多的数据,要把全球的大部分网页都抓下来,可想而知存储量有多大.然后,要能快速检索网页,用户输入几个 ...

  4. Eclipse下使用Hadoop单机模式调试MapReduce程序

    在单机模式下Hadoop不会使用HDFS,也不会开启任何Hadoop守护进程,所有程序将在一个JVM上运行并且最多只允许拥有一个reducer 在Eclipse中新创建一个hadoop-test的Ja ...

  5. 使用Python实现Hadoop MapReduce程序

    转自:使用Python实现Hadoop MapReduce程序 英文原文:Writing an Hadoop MapReduce Program in Python 根据上面两篇文章,下面是我在自己的 ...

  6. 用PHP编写Hadoop的MapReduce程序

    用PHP编写Hadoop的MapReduce程序     Hadoop流 虽然Hadoop是用Java写的,但是Hadoop提供了Hadoop流,Hadoop流提供一个API, 允许用户使用任何语言编 ...

  7. HADOOP之MAPREDUCE程序应用二

    摘要:MapReduce程序进行单词计数. 关键词:MapReduce程序  单词计数 数据源:人工构造英文文档file1.txt,file2.txt. file1.txt 内容 Hello   Ha ...

  8. Hadoop之MapReduce程序应用三

    摘要:MapReduce程序进行数据去重. 关键词:MapReduce   数据去重 数据源:人工构造日志数据集log-file1.txt和log-file2.txt. log-file1.txt内容 ...

  9. 简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行

    [TOC] 简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行 程序源码 import java.io.IOException; import java.util. ...

随机推荐

  1. vue如何给它的data值赋值

    activeDisplay的值如何改变 用$set();方法 vm.$set('b', 2) 或者 Vue.set(data, 'c', 3) this.someObject = Object.ass ...

  2. php获取当前月份的前(后)几个月

    //获取当前月份的前一月 function GetMonth($sign) { //得到系统的年月 $tmp_date=date("Ym"); //切割出年份 $tmp_year= ...

  3. 数字游戏(string的sort的应用)

    题目描述 牛牛举办了一场数字游戏,有n个玩家参加这个游戏,游戏开始每个玩家选定一个数,然后将这个数写在纸上(十进制数,无前缀零),然后接下来对于每一个数字将其数位按照非递减顺序排列,得到新的数,新数的 ...

  4. redis数据库服务器开启的三种方式

    redis的启动方式1.直接启动  进入redis根目录,执行命令:  #加上‘&’号使redis以后台程序方式运行 1 ./redis-server & 2.通过指定配置文件启动  ...

  5. NodeJS学习笔记 (7)网络服务-http-client(ok)

    原文:https://github.com/chyingp/nodejs-learning-guide 自己敲代码: ClientRequest概览 当你调用 http.request(options ...

  6. [APIO2014]回文串(回文自动机)

    题意 给你一个由小写拉丁字母组成的字符串 s.我们定义 s 的一个子串的存在值为这个子串在 s 中出现的次数乘以这个子串的长度. 对于给你的这个字符串 s,求所有回文子串中的最大存在值. |S|< ...

  7. Spring Boot基础教程》 第1节工具的安装和使用

    <Spring Boot基础教程> 第1节 工具的安装和使用 Spring Boot文档 https://qbgbook.gitbooks.io/spring-boot-reference ...

  8. MySQL 高可用:mysql+mycat实现数据库分片(分库分表)

    本文引用于http://blog.csdn.net/kk185800961/article/details/51147029 MySQL 高可用:mysql+mycat实现数据库分片(分库分表) 什么 ...

  9. 继续过Hard题目.周五

      # Title Editorial Acceptance Difficulty Frequency   . 65 Valid Number     12.6% Hard    . 126 Word ...

  10. Swift编写的一些完整的app

    收集了一些实用swift编写的app,这些demo都是不错的值得学习的. 知乎日报 Swift-ZhihuDaily Swift版知乎日报 参照了YANGReal的糗事百科和uitableview的例 ...