[ZJOI2016]小星星(容斥+dp)
洛谷链接:https://www.luogu.org/problemnew/show/P3349
题意相当于给一棵树重新赋予彼此不同的编号,要求树上相邻的两个节点在给定的另外一个无向图中也存在边相连。
n很小,但枚举阶乘肯定是会爆炸的。
发现编号彼此不同对统计答案的影响太大了,我们可以尝试先让编号可以重复,但是限制可以选用的编号集,即O(2^n)枚举n个数的子集,然后容斥一下答案。
可选用的编号集合确定了,编号还可以重复,接下来直接跑树形dp就可以了。f(u)(j)存的是u节点映射向j,子树内的总方案数。
#include<bits/stdc++.h>
using namespace std;
const int N=40;
typedef long long ll;
#define rep(i,a,b) for(register int i=(a);i<=(b);++i)
#define il inline
int gr,h[N],nxt[N],to[N];
il void tu(int x,int y){to[++gr]=y,nxt[gr]=h[x],h[x]=gr;}
int n,m,mp[N][N],p[N],tot;
ll ans,dp[18][18],tmp;
void dfs(int u,int f){
rep(j,1,tot)dp[u][j]=1;
for(int i=h[u];i;i=nxt[i]){
int d=to[i];
if(d==f)continue;
dfs(d,u);
rep(j,1,tot){
tmp=0;
rep(k,1,tot){
if(mp[p[j]][p[k]]) tmp+=dp[d][k];
}
dp[u][j]*=tmp;
}
}
}
int main(){
scanf("%d%d",&n,&m);
int a,b;
rep(i,1,m)scanf("%d%d",&a,&b),mp[a][b]=mp[b][a]=1;
rep(i,1,n-1)scanf("%d%d",&a,&b),tu(a,b),tu(b,a);
rep(j,1,(1<<n)-1){tot=0;
rep(i,0,n-1){
if((j>>i)&1)p[++tot]=i+1;
}
dfs(1,0);tmp=0;
rep(i,1,tot)tmp+=dp[1][i];
ans+=(((n-tot)&1)?-1ll:1ll)*tmp;
}
printf("%lld\n",ans);
return 0;
}
[ZJOI2016]小星星(容斥+dp)的更多相关文章
- 4455[Zjoi2016]小星星 容斥+dp
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 527 Solved: 317[Submit][Status] ...
- 「LOJ2091」「ZJOI2016」小星星 容斥+DP
题目描述 小 Y 是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用 \(m\)条彩色的细线串了起来,每条细线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉 ...
- UOJ185 ZJOI2016 小星星 容斥、树形DP
传送门 先考虑一个暴力的DP:设\(f_{i,j,S}\)表示点\(i\)映射到了图中的点\(j\),且点\(i\)所在子树的所有点映射到了图中的集合\(S\)时的映射方案数,转移暴力地枚举子集即可, ...
- BZOJ 4455: [Zjoi2016]小星星(容斥+树形dp)
传送门 解题思路 首先题目中有两个限制,第一个是两个集合直接必须一一映射,第二个是重新标号后,\(B\)中两点有边\(A\)中也必须有.发现限制\(2\)比较容易满足,考虑化简限制\(1\).令\(f ...
- 【BZOJ 4455】 [Zjoi2016]小星星 容斥计数
dalao教导我们,看到计数想容斥……卡常策略:枚举顺序.除去无效状态.(树结构) #include <cstdio> #include <cstring> #include ...
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- $bzoj2560$ 串珠子 容斥+$dp$
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...
随机推荐
- Python获取当前系统时间
Python获取当前系统时间 import time #返回当前时间 def GetNowTime(): return time.strftime("%Y-%m-%d %H:%M:% ...
- [Angular] Why should we using Protal
Origianl article Protal from Angular CDK, is a way to create dynammic component. Consider an example ...
- Implementing Software Timers - Don Libes
在看APUE习题10.5的时候提示了这篇文章,讲的非常清晰,设计也非常巧妙,所以把原文放在这里.值得自己去实现. Title: Implementing Software Timers By ...
- 我们的一个已投产项目的高可用数据库实战 - mongo 副本集的搭建具体过程
我们的 mongo 副本集有三台 mongo 服务器:一台主库两台从库. 主库进行写操作,两台从库进行读操作(至于某次读操作到底路由给了哪台,仲裁决定).实现了读写分离.这还不止,假设主库宕掉,还能实 ...
- 查询结果多个合并一个GROUP_CONCAT(EmployeeName)
一个课程多个教师,查询结果单条显示,其中课程与教师关系是一一对应存入表中
- web.xml整理
web.xml,部署描写叙述符文件(专业术语).是在Servlet规范中定义的.是web应用的配置文件(Servlet 3.0已開始放弃使用web.xml,转而使用annotation注解来配置项目) ...
- Uboot中支持lcd和hdmi显示不同的logo图片【转】
本文转载自:http://blog.csdn.net/u010865783/article/details/54953315 在lcd为竖屏,hdmi显示横屏的情况下,如果按照默认的uboot显示框架 ...
- iOS社会化分享(干货)
一.苹果原生集成的社会化分享 1.哪些平台 (1)Twitter (2)FaceBook (3)Flickr (4)Vimeo (5)新浪微博 :iOS6 (6)腾讯微博 : iOS7 2.框架 : ...
- A Reusable Aspect for Memory Profiling
例子: malPro.acc文件: #include <stdlib.h> size_t totalMemoryAllocated; int totalAllocationFuncCall ...
- Appium + python -always_allows弹窗
from appium import webdriverfrom selenium.webdriver.support.ui import WebDriverWaitfrom selenium.web ...