题目链接

如图所示,在由N行M列个单位正方形组成的矩形中,有K个单位正方形是黑色的,其余单位正方形是白色的。

你能统计出一共有多少个不同的子矩形是完全由白色单位正方形组成的吗?

----------------------------------------------------------------------------------------------------

思路:

完全白色矩形数目 = 总个数 - 包含黑块的矩形数目。

包含黑块的矩形数目 = 包含一个黑块 - 包含两个黑块 + 包含三个黑块……

#include <cstdio>
#include <cstring>
#define MAX(a,b) (a>b?a:b)
#define MIN(a,b) (a<b?a:b)
#define OO 11111
int coords[][];
int main(){
long long m,n;
int left,right,top,bottom;
int k,cnt,curs;
while(scanf("%lld%lld%d",&n,&m,&k)!=EOF){
for(int i=;i<k;i++) scanf("%d %d",&coords[i][],&coords[i][]);
long long ret = n*(n+)/*m*(m+)/;
for(int s=;s<(<<k);s++) {
curs=s; cnt=;
left=top=OO;
right=bottom=-OO;
for(int i=;i<k;i++){
if(curs&){
cnt++;
left=MIN(left,coords[i][]);
right=MAX(right,coords[i][]);
top=MIN(top,coords[i][]);
bottom=MAX(bottom,coords[i][]);
}
curs>>=;
}
int sgn=(cnt%)?(-):;
ret += sgn*left*top*(n+-bottom)*(m+-right);
}
printf("%lld\n",ret);
}
return ;
}

hiho 1476 - 矩形计数 容斥的更多相关文章

  1. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  2. BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合

    比较头疼的计数题. 我们发现,放置一个棋子会使得该棋子所在的1个行和1个列都只能放同种棋子. 定义状态 $f_{i,j,k}$ 表示目前已使用了 $i$ 个行,$j$ 个列,并放置了前 $k$ 种棋子 ...

  3. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  4. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  5. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

  6. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  7. BZOJ.4558.[JLOI2016]方(计数 容斥)

    BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...

  8. 容斥 或者 单调栈 hihocoder #1476 : 矩形计数 和 G. Snake Rana 2017 ACM Arabella Collegiate Programming Contest

    先说一个简单的题目(题目大意自己看去,反正中文):hihocoder上的:http://hihocoder.com/problemset/problem/1476 然后因为这个n和m的矩阵范围是100 ...

  9. BZOJ 3456 NTT图的计数 容斥

    思路: RT 懒得写了 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm&g ...

随机推荐

  1. swift的属性与变量- Stored Properties and Instance Variables

    是一个概念 Stored Properties and Instance Variables If you have experience with Objective-C, you may know ...

  2. 后代children() find()的区别

    $(document).ready(function(){ $("div").children(); });只拿到div下面的子标签元素 $(document).ready(fun ...

  3. android学习路线总结

    感谢安辉作者,学习路线  https://www.cnblogs.com/yishaochu/p/5436094.html https://www.cnblogs.com/jycboy/p/60666 ...

  4. 阿里云服务上面部署redis + 本地Redis客户端连接方法

    本文结合自己在阿里云服务器上面搭建redis服务器,在本地redis的客户端Redis Desktop Manager连接成功的操作,将操作中的一些方法做了一些归纳和总结,希望可以帮到有需要的同学. ...

  5. P3375 【模板】KMP字符串匹配 (KMP模板)

    题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next. (如果你不知道这是什么意思也不要问,去百度 ...

  6. ndk,cygwin编译 .so动态库

    注意: ndk .cygwin 安装路径尽量要和sdk放到一个磁盘里,设置环境变量. 例如D: 根目录  变量名:ndk   值:/cygdrive/d/android-ndk-r8e 打开cygwi ...

  7. 00073_Math类

    1.Math类概述 (1)Math 类是包含用于执行基本数学运算的方法的数学工具类,如初等指数.对数.平方根和三角函数: (2)类似这样的工具类 ,其所有方法均为静态方法,并且一般不会创建对象.如Sy ...

  8. EL表达式取整问题

    一般来说我们是无法实现EL表达式取整的.对于EL表达式的除法而言,他的结果是浮点型. 如:${6/7},他的结果是:0.8571428571428571.对于这个我们是无法直接来实现取整的. 这时就可 ...

  9. RobotFrameWork+APPIUM实现对安卓APK的自动化测试----第一篇【安装】

    文章来源http://blog.csdn.net/deadgrape/article/details/50563119 前言:关于RobotFrameWork+APPIUM实现对安卓APK的自动化测试 ...

  10. C++ constexpr类型说明符

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50864210 关键字 constexp ...