这道题太精彩了!

我一开始想直接一波暴力算,然后叫上去只有50分,50分超时

然后我改成万位制提高运算效率,还是只有50分

然后我丧心病狂开long long用10的10次方作为一位,也就是100亿进制

去做,然后交上去多过了一个点,60分

附上丧心病狂的代码

#include<cstdio>
#include<cctype>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std; typedef long long ll;
const int MAXN = 1123456 / 10;
const ll base = 1e10;
ll a[MAXN];
int len, n; void cal()
{
_for(i, 1, len) a[i] <<= 1;
_for(i, 1, len)
{
a[i+1] += a[i] / base;
a[i] %= base;
}
if(a[len+1])
{
len++;
a[len+1] += a[len] / base;
a[len] %= base;
}
} int main()
{
scanf("%d", &n);
len = 1; a[1] = 2;
REP(i, 1, n) cal(); int p = 1;
a[p] -= 1;
while(a[p] < 0)
{
a[p + 1]--;
a[p] += base;
p++;
}
if(a[len] == 0) len--; ll t = a[len], num = 0;
while(t) t /= 10, num++; printf("%d\n", len * 10 - 10 + num);
for(int i = 50, t = 0; i >= 1; i--, t++)
{
if(t == 5) puts(""), t = 0;
printf("%010lld", a[i]);
} return 0;
}

然后我最后还是看了题解

然后看到算位数真的是给折服的

还有这种操作???

由于10的x次方的位数是x+1

然后可以把2的p次方转化成类似10的x次方来算位数

然后这个时候就用到了log

一波骚操作可以得出位数就是p * lg(2) + 1

牛逼!

然后算前500位。

我竟然没看出这是个快速幂??????

用高精度做快速幂还是头一次。

不过稍微改一下就好了。

#include<cstdio>
#include<cctype>
#include<cstring>
#include<cmath>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std; typedef long long ll;
const int MAXN = 1123;
struct bignum
{
ll s[MAXN]; int len;
bignum() { memset(s, 0, sizeof(s)); len = 1; }
}; bignum operator * (const bignum& a, const bignum& b)
{
bignum c;
c.len = min(a.len + b.len - 1 , 500);
_for(i, 1, a.len)
_for(j, 1, b.len)
{
c.s[i+j-1] += a.s[i] * b.s[j];
c.s[i+j] += c.s[i+j-1] / 10;
c.s[i+j-1] %= 10;
}
if(c.s[c.len+1] && c.len < 500) c.len++;
return c;
} int main()
{
int b;
scanf("%d", &b);
printf("%d\n", (int)(b * log10(2)+ 1)); bignum res; res.s[1] = 1;
bignum a; a.s[1] = 2;
while(b)
{
if(b & 1) res = res * a;
b >>= 1;
a = a * a;
}
res.s[1] -= 1; for(int i = 500; i >= 1; i--)
{
if(i != 500 && i % 50 == 0) puts(""); //这个写法很简便
printf("%d", res.s[i]);
}
puts(""); return 0;
}

洛谷 P1045 麦森数 (快速幂+高精度+算位数骚操作)的更多相关文章

  1. 洛谷 P1045 麦森数

    题目描述 形如2^{P}-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^{P}-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...

  2. 洛谷P1045 麦森数

    题目描述 形如2^{P}-12 ​P ​​ −1的素数称为麦森数,这时PP一定也是个素数.但反过来不一定,即如果PP是个素数,2^{P}-12 ​P ​​ −1不一定也是素数.到1998年底,人们已找 ...

  3. NOIP2003 普及组 洛谷P1045 麦森数 (快速幂+高精度)

    有两个问题:求位数和求后500位的数. 求位数:最后减去1对答案的位数是不影响的,就是求2p的位数,直接有公式log10(2)*p+1; 求后500位的数:容易想到快速幂和高精度: 1 #includ ...

  4. P1045麦森数

    P1045麦森数 #include<iostream> #include <cmath> #include <cstring> const int maxn = 1 ...

  5. 洛谷 P1226 【模板】快速幂||取余运算

    题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...

  6. 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂

    洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...

  7. 【题解】[P1045] 麦森数

    题目 题目描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1 不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...

  8. 洛谷P1226 【模板】快速幂||取余运算

    题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1: ...

  9. 洛谷P1313 计算系数【快速幂+dp】

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

随机推荐

  1. 粘包解决高端_Client

    from socket import * #导入套接字模块的所有命令import struct #导入struck模块,用于封装数据流长度# from functools import partial ...

  2. 转:用java调用oracle存储过程总结(比较好理解)

    这段时间开始学习写存储过程,主要原因还是因为工作需要吧,本来以为很简单的,但几经挫折,豪气消磨殆尽,但总算搞通了,为了避免后来者少走弯路,特记述与此,同时亦对自己进行鼓励. 一:无返回值的存储过程 存 ...

  3. laravel 常用单词翻译

    1.ORM:(Object Relational Mapping,简称ORM,或O/RM,或O/R mapping), 翻译为:对象关系映射. 是一种程序技术,用于实现面向对象编程语言里不同类型系统的 ...

  4. 开放个人电脑端口[Windows]

    先打开控制面板

  5. Maven学习总结(23)——Maven常用命令介绍

    1.生成eclipse项目:mvn eclipse:eclipse 2.清除eclipse的一些系统设置:mvn eclipse:clean 3.mvn tomcat:run 在tomcat里面运行 ...

  6. CSVHelper读出乱码 解决方案

    using (FileStream fileStream = new FileStream(path, FileMode.Open, FileAccess.Read)) using (StreamRe ...

  7. Mysql怎么样避免全表扫描,sql查询优化

    对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引: 尝试下面的技巧以避免优化器错选了表扫描: 使用ANALYZE TABLE tbl_name为扫 ...

  8. IOS Sqlite用户界面增删改查案例

    1.案例简单介绍 对SQLite操作进行了简单的封装,将对数据表操作转变成对对象的操作,并通过UI界面完毕对用户表的增.删.改.查,执行界面例如以下图所看到的 a 2.项目project文件夹 Use ...

  9. 【Android】Android程序自己主动更新

    App自己主动更新的步骤可分为三步: 检查更新(假设有更新进行第2步,否则返回) 下载新版的APK安装包 安装APK 以下对这三步进行解释.当中会穿插相应代码.App自己主动更新的这三步所有被封装到了 ...

  10. 在GitHub上使用Hexo搭建静态博客

    搭建静态博客须要一个前提是电脑上有安装git而且有github帐号,这个不懂能够看廖雪峰先生的git教程 1.下载nodejs.在官网上能够下载 2.使用git进入你新建的一个目录,输入命令 npm ...