OpenCV:Adaboost训练时数据扩增
更准确的模型需要更多的数据,对于传统非神经网络机器学习方法,不同的特征需要有各自相符合的数据扩增方法。
1. 在使用opencv_traincascade.exe 过程中,图像读取在
classifier.train -> updateTrainingSet( requiredLeafFARate, tempLeafFARate )->fillPassedSamples( 0, numPos, true, 0, posConsumed )->imgReader.getPos( img ) : imgReader.getNeg( img )过程中。
2. 在进行数据增强的过程中,从createSample开始,保证vecFile和样本数目长度一致。
修改代码段依次为:
//int cvCreateTrainingSamplesFromInfoRf(const char* infoname, const char* vecfilename,
int cvCreateSamplesPlus(const char* infoname, const char* vecfilename, int num,
int showsamples,
int winwidth, int winheight)
{
CvEnhanseData enhanser; char fullname[PATH_MAX];
char* filename; FILE* info;
FILE* vec;
//IplImage* src = 0;
//IplImage* sample;
cv::Mat src, sample;
int line;
int error;
int i;
int x, y, width, height;
int total; assert(infoname != NULL);
assert(vecfilename != NULL); total = 0;
if (!icvMkDir(vecfilename))
{ #if CV_VERBOSE
fprintf(stderr, "Unable to create directory hierarchy: %s\n", vecfilename);
#endif /* CV_VERBOSE */ return total;
} info = fopen(infoname, "r");
if (info == NULL)
{ #if CV_VERBOSE
fprintf(stderr, "Unable to open file: %s\n", infoname);
#endif /* CV_VERBOSE */ return total;
} vec = fopen(vecfilename, "wb");
if (vec == NULL)
{ #if CV_VERBOSE
fprintf(stderr, "Unable to open file: %s\n", vecfilename);
#endif /* CV_VERBOSE */ fclose(info); return total;
} //sample = cvCreateImage(cvSize(winwidth, winheight), IPL_DEPTH_8U, 1); icvWriteVecHeader(vec, num, winwidth, winheight); if (showsamples)
{
cvNamedWindow("Sample", CV_WINDOW_AUTOSIZE);
} strcpy(fullname, infoname);
filename = strrchr(fullname, '\\');
if (filename == NULL)
{
filename = strrchr(fullname, '/');
}
if (filename == NULL)
{
filename = fullname;
}
else
{
filename++;
} for (line = 1, error = 0, total = 0; total < num; line++)
{
int count; error = (fscanf(info, "%s %d", filename, &count) != 2);
if (!error)
{
//src = cvLoadImage(fullname, 0);
//error = (src == NULL); src = cv::imread(fullname, 0);
error = (src.data == NULL); if (error)
{ #if CV_VERBOSE
fprintf(stderr, "Unable to open image: %s\n", fullname);
#endif /* CV_VERBOSE */ }
}
for (i = 0; (i < count) && (total < num); i++, total++)
{
error = (fscanf(info, "%d %d %d %d", &x, &y, &width, &height) != 4);
if (error) break;
//cvSetImageROI(src, cvRect(x, y, width, height));
//cvResize(src, sample, width >= sample->width &&height >= sample->height ? CV_INTER_AREA : CV_INTER_LINEAR);
cv::resize(src, sample, cv::Size(winwidth,winheight)); //if (showsamples)
//{
// cvShowImage("Sample", sample);
// if (cvWaitKey(0) == 27)
// {
// showsamples = 0;
// }
//} //icvWriteVecSample(vec, sample); {
int extNum = 7; //IplImage* sample2 = cvCreateImage(cvGetSize(sample), IPL_DEPTH_8U, sample->nChannels);
//cvCopyImage(sample, sample2); std::vector<cv::Mat > imgLIst(extNum);
cv::Mat inMat(sample);//此句导致占用释放错误
enhanser.EnhanceData(inMat, extNum, 1, imgLIst); for (int i = 0; i < extNum; ++i)
{//把Mat 生成移除来//已不必要 //IplImage* sampleT = nullptr;// = nullptr;
//*sampleT = IplImage(imgLIst[i]);
//icvWriteVecSample(vec, sampleT);
icvWriteVecSamplePlus(vec,imgLIst[i]); //if (sampleT)
//{
// cvReleaseImage(&sampleT);
//}
} }
} //if (src)
//{
// cvReleaseImage(&src);
//} if (error)
{ #if CV_VERBOSE
fprintf(stderr, "%s(%d) : parse error", infoname, line);
#endif /* CV_VERBOSE */ break;
}
} //if (sample)
//{
// cvReleaseImage(&sample);
//} fclose(vec);
fclose(info); return total;
}
修改函数:void icvWriteVecSample
//对每个图像写入正样本Vec
void icvWriteVecSamplePlus(FILE* file, cv::Mat &sample)
{
//CvMat* mat, stub;
int r, c;
short tmp;
uchar chartmp; //mat = cvGetMat(sample, &stub);
chartmp = 0;
fwrite(&chartmp, sizeof(chartmp), 1, file);
for (r = 0; r < sample.rows; r++)
{
for (c = 0; c < sample.cols; c++)
{
//tmp = (short)(CV_MAT_ELEM(*mat, uchar, r, c));
tmp = (short)(sample.at<unsigned char>(r,c));
fwrite(&tmp, sizeof(tmp), 1, file);
}
}
}
使用C++语言替换掉使用C语言的版本。
同时对生成新的Vec增加int extNum = 7;倍。
OpenCV:Adaboost训练时数据扩增的更多相关文章
- opencv_traincascade级联训练人脸数据
正负样本格式: 正样本 灰度化 24*24 2000张 负样本 灰度化 50*50 1000张 训练过程 第一步:dir /b >pos.txt 以及dir /b >neg.txt ...
- opencv python训练人脸识别
总计分为三个步骤 一.捕获人脸照片 二.对捕获的照片进行训练 三.加载训练的数据,识别 使用python3.6.8,opencv,numpy,pil 第一步:通过笔记本前置摄像头捕获脸部图片 将捕获的 ...
- caffe下训练时遇到的一些问题汇总
1.报错:“db_lmdb.hpp:14] Check failed:mdb_status ==0(112 vs.0)磁盘空间不足.” 这问题是由于lmdb在windows下无法使用lmdb的库,所以 ...
- caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...
- 使用C++将OpenCV中Mat的数据写入二进制文件,用Matlab读出
在使用OpenCV开发程序时,如果想查看矩阵数据,比较费劲,而matlab查看数据很方便,有一种方法,是matlab和c++混合编程,可以用matlab访问c++的内存,可惜我不会这种方式,所以我就把 ...
- 使用Deeplearning4j进行GPU训练时,出错的解决方法
一.问题 使用deeplearning4j进行GPU训练时,可能会出现java.lang.UnsatisfiedLinkError: no jnicudnn in java.library.path错 ...
- DenseNet算法详解——思路就是highway,DneseNet在训练时十分消耗内存
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http: ...
- 百度DMLC分布式深度机器学习开源项目(简称“深盟”)上线了如xgboost(速度快效果好的Boosting模型)、CXXNET(极致的C++深度学习库)、Minerva(高效灵活的并行深度学习引擎)以及Parameter Server(一小时训练600T数据)等产品,在语音识别、OCR识别、人脸识别以及计算效率提升上发布了多个成熟产品。
百度为何开源深度机器学习平台? 有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举. 5月20日,百度在github上开源了其 ...
- Java虚拟机及运行时数据区
1.Java虚拟机的定义 Java虚拟机(Java Virtual Machine),简称JVM.当我们说起Java虚拟机时,可能指的是如下三种不同的东西: 抽象的虚拟机规范 规范的具体实现 一个运行 ...
随机推荐
- Modbus 协议解析
- vuejs验证码
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> </head> ...
- GeoTrust 企业(OV)型 增强版(EV) SSL证书
GeoTrust 企业(OV)型 增强版(EV) SSL证书(GeoTrust True BusinessID with EV SSL Certificates),验证域名所有权,更严格的验证企业 ...
- 【hdu 2036】改革春风吹满地
[题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=2036 [题意] 中文题 [题解] 这里用的是叉积对应的求三角形的面积; 即 A×B=A*B*sin ...
- Java基础学习总结(36)——Java注释模板
代码注释是对代码设计者.代码阅读者以及系统间调用提供了有效的帮助,最大限度的提高团队开发合作效率增强系统的可维护性.我们追求简化,不是为了写注释而写注释. (快速使用请直接看六.七.八) 一.原则: ...
- RDS for MySQL Mysqldump 常见问题和处理
https://help.aliyun.com/knowledge_detail/41732.html?spm=5176.7841698.2.13.u67H3h
- device busy
在mount的时候经常会有device busy,这通常是因为该目录被某个用户或者进程使用.这时候可以用如下命令: fuser mount point 来看一下该mount point被哪个进程占用. ...
- js 推断字符串是否包括某字符串
var Cts = "bblText"; if(Cts.indexOf("Text") > 0 ) { alert('Cts中包括Text字符串'); } ...
- 深入剖析Android四大组件(一)——Activity生命周期具体解释
1.管理Activity的生命周期 不管是正在执行的Activity还是没有执行的Activity,它们都接受Android的框架管理,这使得Activity处于不同的生命周期. ①Activity的 ...
- linux各种IPC机制(进程通信)
linux各种IPC机制 (2011-07-08 16:58:35) 原文地址:linux各种IPC机制(转)作者:jianpengliu 原帖发表在IBM的developerworks网站 ...