POJ 3869 Headshot
Headshot
This problem will be judged on PKU. Original ID: 3869
64-bit integer IO format: %lld Java class name: Main
You have found a use for this gun. You are playing Russian Roulette with your friend. Your friend loads rounds into some chambers, randomly rotates the cylinder, aligning a random chamber with a gun's barrel, puts the gun to his head and pulls the trigger. You hear "click" and nothing else - the chamber was empty and the gun did not shoot.
Now it is your turn to put the gun to your head and pull the trigger. You have a choice. You can either pull the trigger right away or you can randomly rotate the gun's cylinder and then pull the trigger. What should you choose to maximize the chances of your survival?
Input
Output
"SHOOT" - if pulling the trigger right away makes you less likely to be actually shot in the head with the bullet (more likely that the chamber will be empty).
"ROTATE" - if randomly rotating the cylinder before pulling the trigger makes you less likely to be actually shot in the head with the bullet (more likely that the chamber will be empty).
"EQUAL" - if both of the above choices are equal in terms of probability of being shot.
Sample Input
Sample Input #1:
0011 Sample Input #2:
0111 Sample Input #3:
000111
Sample Output
Sample Output #1:
EQUAL Sample Output #2:
ROTATE Sample Output #3:
SHOOT
Source
解题:英语阅读题。。。。条件概率什么的,意思就是当前是0了,那么后面是00的概率是多少,如果选择旋转,那么旋转得到0的概率又是多少,然后比较概率大小即可
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = ;
char str[maxn];
int main() {
while(~scanf("%s",str)) {
int len = strlen(str),a = ,b = ,c = ;
for(int i = ; i < len; ++i)
if(str[i] == '') {
if(str[(i+)%len] == '') a++;
else if(str[(i+)%len] == '') b++;
} else c++;
if(len*a == (len - c)*(a + b)) puts("EQUAL");
else if(len*a < (len - c)*(a + b)) puts("ROTATE");
else puts("SHOOT");
}
return ;
}
POJ 3869 Headshot的更多相关文章
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
- POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37427 Accepted: 16288 Descr ...
- POJ 3254. Corn Fields 状态压缩DP (入门级)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9806 Accepted: 5185 Descr ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- POJ 2255. Tree Recovery
Tree Recovery Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11939 Accepted: 7493 De ...
- POJ 2752 Seek the Name, Seek the Fame [kmp]
Seek the Name, Seek the Fame Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17898 Ac ...
- poj 2352 Stars 数星星 详解
题目: poj 2352 Stars 数星星 题意:已知n个星星的坐标.每个星星都有一个等级,数值等于坐标系内纵坐标和横坐标皆不大于它的星星的个数.星星的坐标按照纵坐标从小到大的顺序给出,纵坐标相同时 ...
随机推荐
- 机器学习(十一) 支持向量机 SVM(上)
一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督 ...
- dl learn task
https://deeplearning4j.org/cn/word2vec Task 1 分类http://blog.csdn.net/czs1130/article/details/7071734 ...
- 【原创】JMS发布者订阅者【异步接收消息】
发布订阅模式和PTP方式不同之处为后者依赖于一个Topic话题: package com.thunisoft.jms.mine.topic; import java.util.HashMap; imp ...
- POJ 3278 Catch That Cow【BFS】
题意:给出n,k,其中n可以加1,可以减1,可以乘以2,问至少通过多少次变化使其变成k 可以先画出样例的部分状态空间树 可以知道搜索到的深度即为所需要的最小的变化次数 下面是学习的代码----@_@ ...
- jQuery第三课 点击按钮 弹出层div效果
jQuery 事件方法 事件方法会触发匹配元素的事件,或将函数绑定到所有匹配元素的某个事件. 触发实例: $("button#demo").click() 上面的例子将触发 id= ...
- thinkphp 5.0整合phpsocketio完整攻略,绕坑
使用环境: thinkphp5.0 项目需求 前端下单,后台接受,并立即做出提示.例如:美团外卖,客户端下单成功后,商家端就会立即有接单语音提示. 开发环境 thinkphp5.0 phpsocket ...
- vue.js的<slot>
使用插槽分发内容在封装vue组件的时候,很多时候就不得不使用到vue的一个内置组件<slot>.slot是插槽的意思,顾名思义,这个<slot>组件的意义是预留一个区域,让其中 ...
- 【BZOJ 1406】 [AHOI2007]密码箱
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于 ...
- HTTP cookies 详解
http://blog.csdn.net/lijing198997/article/details/9378047
- 4、python序列对比
1.列表:[ ],杂(什么都可以放进去),有序,可变 2.元组:(),有序,不可变 3.字典:{ },键值对,无序,可变 4.集合:{ },不可重复,无序,可变