Tensorflow函数——tf.set_random_seed(seed)
设置图级随机seed。
依赖于随机seed的操作实际上从两个seed中获取:图级和操作级seed。 这将设置图级别的seed。
其与操作级seed的相互作用如下:
1.如果没有设置图形级别和操作seed,则使用随机seed进行操作。
2.如果设置了图级seed,但操作seed没有设置:系统确定性地选择与图级seed一起的操作seed,以便获得唯一的随机序列。
3.如果没有设置图级seed,但是设置了操作seed:使用默认的图级seed和指定的操作seed来确定随机序列。
4.如果图级和操作seed都被设置:两个seed联合使用以确定随机序列。
为了说明用户可见的效果,请考虑以下示例:
要跨会话生成不同的序列,既不设置图级别也不设置op级别的seed:
a = tf.random_uniform([1])
b = tf.random_normal([1])
print("Session 1")
with tf.Session() as sess1:
print(sess1.run(a)) # generates 'A1'
print(sess1.run(a)) # generates 'A2'
print(sess1.run(b)) # generates 'B1'
print(sess1.run(b)) # generates 'B2'
print("Session 2")
with tf.Session() as sess2:
print(sess2.run(a)) # generates 'A3'
print(sess2.run(a)) # generates 'A4'
print(sess2.run(b)) # generates 'B3'
print(sess2.run(b)) # generates 'B4'
要为跨会话生成一个可操作的序列,请为op设置seed:
a = tf.random_uniform([1], seed=1)
b = tf.random_normal([1])
# Repeatedly running this block with the same graph will generate the same
# sequence of values for 'a', but different sequences of values for 'b'.
print("Session 1")
with tf.Session() as sess1:
print(sess1.run(a)) # generates 'A1'
print(sess1.run(a)) # generates 'A2'
print(sess1.run(b)) # generates 'B1'
print(sess1.run(b)) # generates 'B2'
print("Session 2")
with tf.Session() as sess2:
print(sess2.run(a)) # generates 'A1'
print(sess2.run(a)) # generates 'A2'
print(sess2.run(b)) # generates 'B3'
print(sess2.run(b)) # generates 'B4'
为了使所有op产生的随机序列在会话之间是可重复的,请设置一个图级别的seed:
tf.set_random_seed(1234)
a = tf.random_uniform([1])
b = tf.random_normal([1])
# Repeatedly running this block with the same graph will generate different
# sequences of 'a' and 'b'.
print("Session 1")
with tf.Session() as sess1:
print(sess1.run(a)) # generates 'A1'
print(sess1.run(a)) # generates 'A2'
print(sess1.run(b)) # generates 'B1'
print(sess1.run(b)) # generates 'B2'
print("Session 2")
with tf.Session() as sess2:
print(sess2.run(a)) # generates 'A1'
print(sess2.run(a)) # generates 'A2'
print(sess2.run(b)) # generates 'B1'
print(sess2.run(b)) # generates 'B2'
Args:
seed: integer.
Tensorflow函数——tf.set_random_seed(seed)的更多相关文章
- Tensorflow图级别随机数设置-tf.set_random_seed(seed)
tf.set_random_seed(seed) 可使得所有会话中op产生的随机序列是相等可重复的. 例如: tf.set_random_seed(1234) a = tf.random_unifor ...
- Tensorflow函数——tf.variable_scope()
Tensorflow函数——tf.variable_scope()详解 https://blog.csdn.net/yuan0061/article/details/80576703 2018年06月 ...
- Tensorflow函数——tf.placeholder()函数
tf.placeholder()函数 Tensorflow中的palceholder,中文翻译为占位符,什么意思呢? 在Tensoflow2.0以前,还是静态图的设计思想,整个设计理念是计算流图,在编 ...
- TensorFlow函数: tf.stop_gradient
停止梯度计算. 在图形中执行时,此操作按原样输出其输入张量. 在构建计算梯度的操作时,这个操作会阻止将其输入的共享考虑在内.通常情况下,梯度生成器将操作添加到图形中,通过递归查找有助于其计算的输入来计 ...
- TensorFlow函数:tf.random_shuffle
tf.random_shuffle 函数 random_shuffle( value, seed=None, name=None ) 定义在:tensorflow/python/ops/random_ ...
- TensorFlow函数:tf.truncated_normal
tf.truncated_normal函数 tf.truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, ...
- TensorFlow函数教程:tf.nn.dropout
tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
随机推荐
- 九十八、SAP中ALV事件之十一,查看图片
一.输入事务代码OAER 二.可以看到相关的图片文件了
- 003、mysql输出多个结果
SELECT VERSION(); SELECT NOW(); 结果1: 结果2: 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信二维码打赏任意金额给作者(微信号:382477247)哦 ...
- 2. FTP 服务器安装
vsftp 安装(linux) Linux : 安装,创建虚拟用户,配置,防火墙设置 1. 安装 执行yum -y install vsftpd 注意: (1) 是否使用sudo权限执行请根据您具体环 ...
- plsql和navicat连接远程oracle(易错点)
plsql和navicat连接远程oracle,只需要安装oracle客户端即可.注意此处是oracle客户端(Instant Client),并不是oracle数据库. oracle客户端下载地址: ...
- flink任务性能优化
如何提高 Flink 任务性能 一.Operator Chain 为了更高效地分布式执行,Flink 会尽可能地将 operator 的 subtask 链接(chain)在一起形成 task,每个 ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-qrcode
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- js基础学习之-js全局对象
声明的三种方式: 第一种: var test; //或var test = 5; 第二种: test = 5; 第三种: window.test; //或window.test = 5; //只是使用 ...
- 代理模式(Proxy Pattern)C#版本的
引用地址 https://www.cnblogs.com/zhili/p/ProxyPattern.html --------------------------------------------- ...
- POJ-3984 迷宫问题(BFS找最短路径并保存)
问题: 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, ...
- 洛谷 P2370 yyy2015c01的U盘
题目传送门 解题思路: 先将每个文件按照占空间从小到大排序,然后跑背包,当到了某一个文件时,价值够了,那么当前文件的体积就是答案. 其实本题是可以二分答案的,但是写挂了... AC代码: #inclu ...