传送门

Luogu

解题思路

首先构造出所有的幸运数字。

然后考虑一个幸运数字会产生多少贡献。

对于一个数 \(x\),它在区间 \([l,r]\) 内的倍数的个数为 \(\lfloor \frac{r}{x} \rfloor - \lceil \frac{l}{x} \rceil + 1\)。

那么我们就只需要对每一个幸运数字算一次贡献即可。。。。。???

然而答案是否定的。

因为同一个数可能是多个幸运数字的倍数,所以我们就需要容斥这些幸运数字的lcm,同理在之前要去掉是其他幸运数字倍数的幸运数字,这样就好了。

细节注意事项

  • 注意一下这题可能会有一些炸数据范围的情况,long double 了解一下。

参考代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#define int long long
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= c == '-', c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
} const int LIM = 10000000000;
const int _ = 100002; int n, vis[_], luck[_], l, r, ans; inline void dfs1(int x) {
if (x > LIM) return ;
if (x != 0) luck[++n] = x;
dfs1(x * 10 + 6), dfs1(x * 10 + 8);
} inline void init() {
dfs1(0);
sort(luck + 1, luck + n + 1);
for (rg int i = 1; i <= n; ++i)
for (rg int j = i + 1; j <= n; ++j)
if (luck[j] % luck[i] == 0) vis[j] = 1;
int tmp = 0;
for (rg int i = 1; i <= n; ++i)
if (!vis[i]) luck[++tmp] = luck[i];
n = tmp;
sort(luck + 1, luck + n + 1, greater < int > ());
} inline int gcd(int a, int b) { return b > 0 ? gcd(b, a % b) : a; } inline int f(int x) { return r / x - (l / x + (l % x != 0 ? 1 : 0)) + 1; } inline void dfs(int x, int cnt, int Lcm) {
if (x == n + 1) {
if (Lcm != 1) ans += (cnt % 2 == 1 ? 1 : -1) * f(Lcm); return ;
}
dfs(x + 1, cnt, Lcm);
long double _Lcm = 1.0 * Lcm / gcd(Lcm, luck[x]) * luck[x];
if (_Lcm > r) return ;
dfs(x + 1, cnt + 1, _Lcm);
} signed main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
init();
read(l), read(r);
dfs(1, 0, 1);
printf("%lld\n", ans);
return 0;
}

完结撒花 \(qwq\)

「SCOI2010」幸运数字的更多相关文章

  1. loj#2013. 「SCOI2016」幸运数字 点分治/线性基

    题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...

  2. AC日记——「SCOI2016」幸运数字 LiBreOJ 2013

    「SCOI2016」幸运数字 思路: 线性基: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 20005 # ...

  3. loj #2013. 「SCOI2016」幸运数字

    #2013. 「SCOI2016」幸运数字 题目描述 A 国共有 n nn 座城市,这些城市由 n−1 n - 1n−1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以 ...

  4. 「洛谷3292」「BZOJ4568」「SCOI2016」幸运数字【倍增LCA+线性基+合并】

    [bzoj数据下载地址]不要谢我 先讲一下窝是怎么错的... \(MLE\)是因为数组开小了.. 看到异或和最大,那么就会想到用线性基. 如果不会线性基的可以参考一下我的学习笔记:「线性基」学习笔记a ...

  5. LOJ #2013「SCOI2016」幸运数字

    时限为什么这么大啊 明摆着放多$ log$的做法过啊$QAQ$ LOJ #2013 题意 有$ Q$次询问,每次询问树上一条链,点有点权,你需要选择一些链上的点使得异或和尽量大 点数$ \leq 2* ...

  6. 【LOJ】 #2013. 「SCOI2016」幸运数字

    题解 最大异或和,明显是个线性基 然而还有那么多路径--那就树分治,反正点数看起来很少,就是为了让人乘上一个60的常数嘛 把一个树的点分树记录下来,然后看看询问的两个点彼此相同的最后一个父亲是谁,把这 ...

  7. loj2013 「SCOI2016」幸运数字

    点分治+线性基 (为了这六个字窝调了一下午一晚上QAQ #include <iostream> #include <cstring> #include <cstdio&g ...

  8. BZOJ 1853 【Scoi2010】 幸运数字

    Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认 为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,8 ...

  9. 「转」python数字图像处理(18):高级形态学处理

    python数字图像处理(18):高级形态学处理   形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...

随机推荐

  1. Many Formulas

    You are given a string S consisting of digits between 1 and 9, inclusive. You can insert the letter ...

  2. 25 JavaScript对象原型&ES5新的对象方法

    JavaScript对象原型 所有JavaScript对象都从原型继承对象和方法 日期对象继承自Date.prototype,数组继承自Array.prototype,对象构造器新建的对象Person ...

  3. 最全面的C/C++编码规范总结

    C语言是面向过程的,而C++是面向对象的 对于不同的编程语言来说,具体的编码规范可以有很大的不同,但是其宗旨都是一致的,就是保证代码在高质量完成需求的同时具备良好的可读性.可维护性.例如我们可以规定某 ...

  4. 学校实训作业:Java爬虫(WebMagic框架)的简单操作

    项目名称:java爬虫 项目技术选型:Java.Maven.Mysql.WebMagic.Jsp.Servlet 项目实施方式:以认知java爬虫框架WebMagic开发为主,用所学java知识完成指 ...

  5. leetcode 0207

    目录 ✅ 561. 数组拆分 I ✅ 1025. 除数博弈 聪明的数学归纳法: 动态规划又来了(没理解,todo 0207): ✅ 557. 反转字符串中的单词 III py 中的 字符 split ...

  6. iOS 开发中常用的排序(冒泡、选择、快速、插入、希尔、归并、基数)算法

    1.冒泡排序: 冒泡算法是一种基础的排序算法,这种算法会重复的比较数组中相邻的两个元素.如果一个元素比另一个元素大(小),那么就交换这两个元素的位置.重复这一比较直至最后一个元素.这一比较会重复n-1 ...

  7. django-实现登录短信验证

    功能演示 核心任务 前端功能: 点击按钮Ajax调用发送验证码功能 输完验证码后Ajax调用验证功能 后端功能: 功能1:发送验证码功能 功能2:验证码检查 后台核心逻辑(不需要手写) 功能3:发短信 ...

  8. SpringBoot与Mybatis整合,插件生成dao、mapper、pojo

    一.创建SpringBoot项目,引入相关依赖包 <?xml version="1.0" encoding="UTF-8"?> <projec ...

  9. icos_snake_port-to-port_configuration

    Topo: # $language = "Python" # $interface = "1.0"# Author:Bing# Date:6/21/2017# ...

  10. 吴裕雄--天生自然PYTHON爬虫:使用Selenium爬取大型电商网站数据

    用python爬取动态网页时,普通的requests,urllib2无法实现.例如有些网站点击下一页时,会加载新的内容,但是网页的URL却没有改变(没有传入页码相关的参数),requests.urll ...