[PyTorch入门之60分钟入门闪击战]之自动推倒
AUTOGRAD: AUTOMATIC DIFFERENTIATION(自动分化)
来源于这里。
autograd包是PyTorch中所有神经网络的核心。首先我们先简单地了解下它,然后我们将训练我们的第一个神经网络。
autograd包为Tensors上的所有操作提供自动分化。它是一个逐步执行的框架,这意味着你的反向传播(backprop)函数是由你的代码运行方式定义的,而且每个迭代器可以是不同的。接下来通过一些例子用更简单的术语来了解autograd。
Tensor
torch.tensor是autograd包的核心。如果你将它的属性.requires_grad设置为True,那么它将开始追踪其上的所有操作。当完成你的计算之后,你可以调用.backward()是所有的梯度自动计算完成。这个张量的梯度会被累积到.grad属性中。
要停止张量追踪记录,你可以使用.detach()将它熊计算记录中分离出来,并防止将来的计算被追踪。
为了阻止追踪记录(和使用内存),你可以使用with torch.no_grad()打包代码块。这在评估模型的时候非常有用,因为当模型的requires_grad=True时,可能具有可训练的参数,但我们并不需要这些梯度。
另外还有一个对自动推倒非常重要的类 --- Function。
Tensor和Function相互关联、构建出一个无环图,它编码了一个完整的计算历史记录。每个tensor都有一个.grad_fn属性,该属性引用自一个创建张量(用户创建的张量除外,它们的.grad_fn是空)的函数。
如果你想计算导数,你可以调用张量上的backward()。如果张量是一个标量(比如它只有一个数据元素),那么你不需要给backward()传递任何特殊的参数;但是如果它拥有多个元素,你需要指定一个特殊的梯度参数,它是一个与形状匹配的张量。
创建一个张量,并设置requires_grad=True来追踪计算。
import torch
x = torch.ones(2,2,requires_grad=True)
print(x)
输出
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
进行一次张量操作:
y = x + 2
print(y)
输出:
tensor([[3., 3.],
[3., 3.]], grad_fn=<AddBackward0>)
y是作为一个操作的结果被创建的,所以它有grad_fn属性:
print(y.grad_fn)
输出:
<AddBackward0 object at 0x121669470>
对y进行更多操作:
z = y * y * 3
out = z.mean()
print(z,out)
tensor([[27., 27.],
[27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)
。requires_grad_(...)可以改变已存在张量的requires_grad属性。如果为给定,该输入标识默认为False。
a = torch.randn(2,2)
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)
输出:
False
True
<SumBackward0 object at 0x121726588>
Gradients(梯度)
现在进行反向传播。因为out只包含一个标量,out.backward()等价于out.backward(torch.tensor(1.))。
out.backward()
打印梯度 d(out)/dx:
print(x.grad)
输出:
tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])
如上,得到了一个4.5填充的2x2的矩阵。我们将out张量命名为\(\omicron\)。我们知道\(\omicron = \frac{1}{4}\sum_iz_i,z_i = 3(x_i+2)^2\),而且\(z_i|_{x_i=1} = 27\),那么,\(\frac{\sigma_\omicron}{\sigma_{x_i}} = \frac{3}{2}(x_i + 2)\),因此\(\frac{\sigma_\omicron}{\sigma_{x_i}}|_{x_i=1} = \frac{9}{2} = 4.5\)。
在数学上,如果你有一个向量值函数\(\vec{y} = f(\vec{x})\),那么遵循\(\vec{x}\)的\(\vec{y}\)的梯度是一个Jacobian矩阵:
\frac{\sigma_{y_1}}{\sigma_{x_1}} \quad \cdots \quad \frac{\sigma_{y_1}}{\sigma_{x_n}} \\
\vdots \quad \ddots \quad \vdots \\
\frac{\sigma_{y_m}}{\sigma_{x_1}} \quad \cdots \quad \frac{\sigma_{y_m}}{\sigma_{x_n}}
\end{pmatrix}\]
通常来讲,torch.autograd是一个计算vector-Jacobian结果的引擎。也就是说,给定任意的\(v = (v_1 \quad v_2 \quad \cdots \quad v_m)^T\),计算\(v^T \cdot J\)的结果。如果\(v\)恰好是标量函数\(l = g(\vec{y})\)的梯度,那么\(v = (\frac{\sigma_l}{\sigma_{y_1}} \quad \cdots \quad \frac{\sigma_l}{\sigma_{y_n}})\),然后根据链接规则,vector-Jacobain的结果就是遵循\(\vec{x}\)的\(l\)的梯度:
\frac{\sigma_{y_1}}{\sigma_{x_1}} \quad \cdots \quad \frac{\sigma_{y_m}}{\sigma_{x_1}} \\
\vdots \quad \ddots \quad \vdots \\
\frac{\sigma_{y_1}}{\sigma_{x_n}} \quad \cdots \quad \frac{\sigma_{y_m}}{\sigma_{x_n}}
\end{pmatrix} \begin{pmatrix}
\frac{\sigma_l}{\sigma_{y_1}} \\
\vdots \\
\frac{\sigma_l}{\sigma_{y_m}}
\end{pmatrix} = \begin{pmatrix}
\frac{\sigma_l}{\sigma_{x_1}} \\
\vdots \\
\frac{\sigma_l}{\sigma_{x_n}}
\end{pmatrix}\]
注意 \(v^T \cdot J\)给出了一个可以看做是从\(J^T \cdot v\)获取的列向量的行向量。
vector-Jacobain结果的特性使得在一个非标量输出的模型中反馈外部梯度非常方便。
现在我们来看一个vector-Jacobain结果的例子:
x = torch.rands(3,requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
print(y)
输出:
tensor([805.7939, -90.6879, 624.5883], grad_fn=<MulBackward0>)
现在这种情况下,y不再是一个标量。torch.autograd不能直接计算完整的Jacobain矩阵,但如果我们只想要vector-Jacobain结果,那么只需将向量作为参数传递给backward即可。
v = torch.tensor([0.1,1.0,0.0001],dtype=torch.float)
y.backward(v)
print(x.grad)
输出:
tensor([2.5600e+01, 2.5600e+02, 2.5600e-02])
你也可以通过使用with torch.no_grad()打包代码块的方式在.requires_grad=True的张量上停止追踪历史记录的自动推倒。
print(x.requires_grad)
print((x ** 2).requires_grad)
with torch.no_grad():
print((x ** 2).requires_grad)
输出:
True
True
False
进阶阅读
更详细的autograd和Function文档在这里。
[PyTorch入门之60分钟入门闪击战]之自动推倒的更多相关文章
- [PyTorch入门之60分钟入门闪击战]之入门
深度学习60分钟入门 来源于这里. 本文目标: 在高层次上理解PyTorch的Tensor库和神经网络 训练一个小型的图形分类神经网络 本文示例运行在ipython中. 什么是PyTorch PyTo ...
- [PyTorch入门之60分钟入门闪击战]之训练分类器
训练分类器 目前为止,你已经知道如何定义神经网络.计算损失和更新网络的权重.现在你可能在想,那数据呢? What about data? 通常,当你需要处理图像.文本.音频或者视频数据时,你可以使用标 ...
- [PyTorch入门之60分钟入门闪击战]之神经网络
神经网络 来源于这里. 神经网络可以使用torch.nn包构建. 现在你对autograd已经有了初步的了解,nn依赖于autograd定义模型并区分它们.一个nn.Module包含了层(layers ...
- PyTorch 60 分钟入门教程
PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程 http://pytorchchina.com/2018/06/25/what-is-pytorch/ PyTorch 6 ...
- 【PyTorch深度学习60分钟快速入门 】Part4:训练一个分类器
太棒啦!到目前为止,你已经了解了如何定义神经网络.计算损失,以及更新网络权重.不过,现在你可能会思考以下几个方面: 0x01 数据集 通常,当你需要处理图像.文本.音频或视频数据时,你可以使用标准 ...
- 【PyTorch深度学习60分钟快速入门 】Part0:系列介绍
说明:本系列教程翻译自PyTorch官方教程<Deep Learning with PyTorch: A 60 Minute Blitz>,基于PyTorch 0.3.0.post4 ...
- 【PyTorch深度学习60分钟快速入门 】Part5:数据并行化
在本节中,我们将学习如何利用DataParallel使用多个GPU. 在PyTorch中使用多个GPU非常容易,你可以使用下面代码将模型放在GPU上: model.gpu() 然后,你可以将所有张 ...
- 【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分
在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的 ...
- 【PyTorch深度学习60分钟快速入门 】Part1:PyTorch是什么?
0x00 PyTorch是什么? PyTorch是一个基于Python的科学计算工具包,它主要面向两种场景: 用于替代NumPy,可以使用GPU的计算力 一种深度学习研究平台,可以提供最大的灵活性 ...
随机推荐
- 10.PoolArena
PoolArena PoolArena成员介绍 PoolChunkList PoolChunkList实例化 PoolChunkList添加PoolChunk PoolChunkList移动PoolC ...
- ReportingService语法
="Dear All:"& vbcrlf & vbcrlf & IIF(First(Fields!ProductFamily.Value, "bc ...
- 解决LoadRunner服务器返回乱码
- Rails render collection 的魔法
都知道的, 在 Rails 的 View 里边渲染集合的时候, 会用到 render 方法参数的 collection 选项 1 <%= render partial: "produc ...
- python 3.6
安装了最新版anaconda3-4.3 发现jupyter-notebook 少了一些东西.需要手工安装 https://github.com/Anaconda-Platform/nbpresent
- Servlet&JSP复习笔记 02
1.Servlet获取请求参数 获取请求参数依靠的是表单元素的name属性,广泛意义来说id属性是给客户端使用的,name属性是服务器使用的. a.获取Name-Value的方法: - getPara ...
- nginx常见的面试题
问题1:Nginx是用来干嘛的? Nginx是一个高性能的HTTP和反向代理服务器,这个基本是用来前端服务器集群后做负载均衡和动静分离用的. 负载均衡即是代理服务器将接收的请求均衡的分发到各服务器中, ...
- Graylog
Graylog #Graylog 是与 ELK 可以相提并论的一款集中式日志管理方案,支持数据收集.检索.可视化 #Graylog 架构 - Graylog 负责接收来自各种设备和应用的日志,并为用 ...
- 基于Wiki的知识共享平台模型架构
一.引言 当今的全球化知识经济社会中呈现出信息泛滥和知识更新周期短的现象,知识管理逐渐成为现代企业管理中不容忽视的一环.虚拟企业是基于共识目标而组成的动态协作组织,成员参与的流动性与各成员之间地域分布 ...
- Getting Started with STM32 in Segger Embedded Studio
初识Segger Embedded Studio(SES) 第一次见SES是在“安富莱电子论坛”上,“硬汉”提到SES的一些特性,再加上Jlink的大名,于是试试他们家的IDE. SES貌似也是基于E ...