SDOI_染色

背景:很早就想学习树链剖分,趁着最近有点自由安排的时间去学习一下,发现有个很重要的前置知识——线段树。(其实不一定是线段树,但是线段树应该是最常见的),和同学吐槽说树剖的剖和分都很死板,主要还是看线段树的维护功底。但是也要知道剖分完的结果,不然就算线段树玩得飞起,也维护不了。看了网上很多博客,都是说一个geth,一个mark完成树链剖分,然后映射到线段树上,进行维护,其实这只是一个大体思想,还是建议自己手动模拟一下去加深理解。

前置知识:

1、重儿子:hs[u]=v,表示vu的重儿子。意思是vu的儿子中子树规模(包括自己)最大的。

轻儿子:除了重儿子的其他儿子。

2、重链:由重儿子组成的链。

轻链:除了重链的其他链。

3、顶端结点:重链的开头。

说是重轻分解,其实实质是把重链揪出来(即从轻链处砍断连接关系)连在一起拼凑成区间(同一条重链上结点编号映射到数据结构上连续),用数据结构维护,也就是说把树变成由重链组成的,只剩下重链,不考虑轻链,对于映射,同一条重链中浅结点编号小。

个人觉得这句话很通俗易懂了。~

关于树链剖分:

首先:要是一棵树。。然后有几种剖分:1、随便剖分,爱怎么编号怎么编号。2、启发式剖分(也就是常见的重轻分解)。显然!2比较科学,随便的东西肯定不稳定,就算是不随便的也不一定稳定。。(基数排序最后倒数组时的for downto...就比for to.稳定,而正for显然不是随便的东西,我不会证明也一直没想明白,还望看官指点)。我们可以很简单的运用两次dfs完成对一棵树的剖分(第一次:geth,第二次:mark)。第一次主要是得到深度、父亲、规模、重儿子;第二次则是将同一条重链上的结点编号在一起,对应到线段树上。(rank[]、sa[] 这两个数组和在后缀数组中一样,因为不懂后缀数组,所以用这两个提醒自己还是个弱者),以及记录重链顶端结点。

其次:其实可以说,树链剖分的题,暴力求解就是树上倍增(跑LCA,然后沿途更新),那么如何优化?显然LCA肯定要跑,有没有办法跑得更快?答案是肯定的,树链的剖分就是让LCA跑得更快。显然对于V(u,v)要么在一条重链上,要么不在一条重链上。如果在一条重链上,深度浅的就是LCA,如果不在呢?不妨定义u为深度更深的结点,那么倍增的思想告诉我们应该把u跳到和v一样浅,然后一起跳。然而轻重分解直接把u跳到其所在重链顶端(期间维护和求解该链上的答案),判断u,v在不在一条重链上(tp[u]==tp[v]?),然后不断进行这个过程直到u,v在同一重链后运用数据结构维护求解。那么我们又知道了同一条重链新编号连续,那么进行区间维护就很方便了。

最后:看各位的线段树功底了,反正笔者的线段树是很差的。。

(PS:第一次看到给20s的题,有点刺激)


Code:

#pragma comment(linkerr, "/STACK: 1024000000,1024000000")
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define em emplace
#define pii pair<int,int>
#define de(x) cout << #x << " = " << x << endl
#define clr(a,b) memset(a,b,sizeof(a))
#define INF (0x3f3f3f3f)
#define LINF ((long long)(0x3f3f3f3f3f3f3f3f))
#define F first
#define S second
#define lson rt<<1,l,m
#define rson rt<<1|1,m+1,r
using namespace std; const int N = 1e5 + 15;
int n, m; int d[N], fa[N], sz[N], hs[N];
int nw, sa[N], rk[N], tp[N];
struct Edge
{
int v, nxt;
};
Edge e[N<<1];
int h[N], ect;
void init()
{
ect = nw = 0;
clr(h,-1);
}
void _add( int u, int v )
{
e[ect].v = v;
e[ect].nxt = h[u];
h[u] = ect ++;
} void geth( int u, int f, int de )
{
fa[u] = f;
sz[u] = 1;
hs[u] = 0;
d[u] = de;
for ( int i = h[u]; i+1; i = e[i].nxt )
{
int v = e[i].v;
if ( v == f ) continue;
geth( v, u, de+1 );
sz[u] += sz[v];
if ( sz[v] > sz[hs[u]] ) hs[u] = v;
}
}
void mark( int u, int tu )
{
tp[u] = tu;
sa[++nw] = u; rk[u] = nw;
if ( !hs[u] ) return ;
mark( hs[u], tu );
for ( int i = h[u]; i+1; i = e[i].nxt )
{
int v = e[i].v;
if ( v != fa[u] && v != hs[u] ) mark(v,v);
}
} struct T
{
int sm, lazy, lc, rc;
};
T t[N<<2];
int A[N];
int nwlc, nwrc; void pushup( int rt )
{
t[rt].sm = t[rt<<1].sm + t[rt<<1|1].sm;
t[rt].lc = t[rt<<1].lc;
t[rt].rc = t[rt<<1|1].rc;
if ( t[rt<<1].rc == t[rt<<1|1].lc )
t[rt].sm --;
}
void pushdown( int rt, int l, int r )
{
if ( t[rt].lazy )
{
t[rt].lazy = 0;
t[rt<<1].lazy = t[rt<<1|1].lazy = 1;
t[rt<<1].sm = t[rt<<1|1].sm = 1;
t[rt<<1].lc = t[rt<<1].rc = t[rt].lc;
t[rt<<1|1].lc = t[rt<<1|1].rc = t[rt].rc;
}
} void build( int rt, int l, int r )
{
t[rt].lazy = 0;
if ( l == r )
{
t[rt].sm = 1;
t[rt].lc = t[rt].rc = A[sa[l]];
return ;
}
int m = (l+r) >> 1;
build(lson); build(rson); pushup(rt);
} void update( int L, int R, int c, int rt, int l, int r )
{
if ( L <= l && r <= R )
{
t[rt].lc = t[rt].rc = c;
t[rt].sm = t[rt].lazy = 1;
return ;
}
int m = (l+r) >> 1;
pushdown(rt,l,r);
if ( L <= m ) update( L, R, c, lson );
if ( R > m ) update( L, R, c, rson );
pushup(rt);
} int query( int L, int R, int rt, int l, int r )
{
if ( L == l ) nwlc = t[rt].lc;
if ( R == r ) nwrc = t[rt].rc;
if ( L <= l && r <= R )
return t[rt].sm;
int m = (l+r) >> 1, res = 0, lft = 0; pushdown(rt,l,r);
if ( L <= m )
{
lft = 1;
res += query( L, R, lson );
}
if ( R > m )
{
res += query( L, R, rson );
if ( lft && t[rt<<1].rc == t[rt<<1|1].lc ) res --;
}
pushup(rt);
return res;
} int getsum( int u, int v )
{
int lstulc, lstvlc;
lstulc = lstvlc = -1;
int res = 0;
int x = tp[u], y = tp[v];
while ( x != y )
{
if ( d[x] < d[y] ) swap(x,y), swap(u,v), swap(lstulc,lstvlc);
res += query( rk[x], rk[u], 1,1,n );
if ( nwrc == lstulc ) res --;
lstulc = nwlc;
u = fa[x]; x = tp[u];
}
if ( d[u] > d[v] ) swap(u,v), swap( lstulc, lstvlc );
res += query( rk[u], rk[v], 1,1,n );
if ( nwlc == lstulc ) res --;
if ( nwrc == lstvlc ) res --;
return res;
} void change( int u, int v, int c )
{
int x = tp[u], y = tp[v];
while ( x != y )
{
if ( d[x] < d[y] ) swap(x,y), swap(u,v);
update( rk[x], rk[u], c, 1,1,n );
u = fa[x]; x = tp[u];
}
if ( d[u] > d[v] ) swap( u, v );
update( rk[u], rk[v], c, 1,1,n );
} int main()
{
init();
scanf("%d%d", &n, &m);
for ( int i = 1; i <= n; i ++ )
scanf("%d", &A[i]);
for ( int i = 1, u, v; i < n; i ++ )
{
scanf("%d%d", &u, &v);
_add(u,v); _add(v,u);
}
geth(1,0,1);
mark(1,1);
build(1,1,n); while ( m -- )
{
char s[2];
int u, v, c;
scanf("%s %d%d", s, &u, &v);
if ( s[0] == 'C' )
{
scanf("%d", &c);
change( u, v, c );
}
else
printf("%d\n", getsum(u,v));
}
return 0;
}

SDOI2011_染色的更多相关文章

  1. bzoj2243树链剖分+染色段数

    终于做了一道不是一眼出思路的代码题(⊙o⊙) 之前没有接触过这种关于染色段数的题目(其实上课好像讲过),于是百度了一下(现在思维能力好弱) 实际上每一段有用的信息就是总共有几段和两段各是什么颜色,在开 ...

  2. 51nod 算法马拉松18 A 染色问题

    染色问题 基准时间限制:1 秒 空间限制:10240 KB 分值: 40 一个n(3<=n<=100)个点的完全图,现在给出n,要求将每条边都染上一种颜色k(1<=k<=n), ...

  3. BZOJ 2243: [SDOI2011]染色 [树链剖分]

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6651  Solved: 2432[Submit][Status ...

  4. NOIP2008双栈排序[二分图染色|栈|DP]

    题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...

  5. 洛谷P1330封锁阳光大学[二分图染色]

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  6. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  7. NOIP2010关押罪犯[并查集|二分答案+二分图染色 | 种类并查集]

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”(一个正整数值)来表示 ...

  8. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

  9. UVALive 4849 String Phone(2-sat、01染色)

    题目一眼看去以为是4-sat... 题意:给n(n<=3000)个黑方块的坐标,保证黑方块没有公共边.对于每个黑方块选一个角作为结点,使得所选结点满足输入的一个无向图.其中距离为曼哈顿距离.输出 ...

随机推荐

  1. linux如何设置用户权限

    linux与用户权限设置: 1.添加用户 首先用adduser命令添加一个普通用户,命令如下: #adduser tommy //添加一个名为tommy的用户 #passwd tommy //修改密码 ...

  2. 关于OS命令注入的闭合问题

    1.在Windows下 windows下非常好办,只需要&肯定可以执行: C:\Users\xxx\Desktop>aaaa | 127.0.0.1 'aaaa' 不是内部或外部命令,也 ...

  3. Linux应急响应思路详谈

    一.主机篇: 1.自动化初筛,建议使用RootkitHunter (1)安装 $sudo wget https://jaist.dl.sourceforge.net/project/rkhunter/ ...

  4. IIS的安装和配置

    一.首先是安装IIS.打开控制面板,找到“程序与功能” 二. “打开或关闭Windows功能”, 安装 “Internet 信息服务” 三. 安装完后回控制面板里面,找到“管理工具” 四. 双击“In ...

  5. SqlServer复杂存储过程

    SqlServer复杂存储过程 CREATE PROCEDURE FETCH_GOOUT_INFO AS BEGIN WITH l as(SELECT A.ZJHM, O.KSQR, O.JSRQ, ...

  6. Mac - 苹果电脑mac系统释放硬盘空间方法汇总

    硬盘空间是大家最头痛的一个问题,大家在硬盘空间变小的时候怎么腾空间的呢?下面为大家分享7个mac系统释放空间的高级方法,大家赶紧来收了! mac系统释放硬盘空间方法: 方法一:删除Emacs--可以节 ...

  7. postgresql架构基础(转)-(1)

    PostgreSQL使用一种客户端/服务器的模型.一次PostgreSQL会话由下列相关的进程(程序)组成: 一个服务器进程,它管理数据库文件.接受来自客户端应用与数据库的联接并且代表客户端在数据库上 ...

  8. Systemd unit generators unit

    systemd.generator(7) - Linux manual page http://man7.org/linux/man-pages/man7/systemd.generator.7.ht ...

  9. Fast and Accurate Traffic Matrix Measurement Using Adaptive Cardinality Counting

    paper-CaiPan.pdf http://conferences.sigcomm.org/sigcomm/2005/paper-CaiPan.pdf

  10. python调用C++之pybind11入门(相互调用)

    python调用C/C++有不少的方法,如boost.python, swig, ctypes, pybind11等,这些方法有繁有简,而pybind11的优点是对C++ 11支持很好,API比较简单 ...